An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace

Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel

Abstract:

In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.

Keywords: Fuel cell dynamics, real time simulation, fuel cell, modelling, testing.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1130027

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024

References:


[1] Advisory Council for Aeronautics Research in Europe. Strategic Research Agenda, Volume 1, 2002.
[2] European Commission: Flightpath 2050: Europe’s vision for aviation; maintaining global leadership and serving society’s needs; report of the high-level group on aviation research. Luxembourg, Publ. Office of the European Union, 2011.
[3] Isikveren, A.: Realizing flightpath 2050: An investigation of potential technological solutions. In: SAE 2011 AeroTech Congress, Toulouse, 2011, SAE International.
[4] Enzinger, M.: Technology programs- multifunctional fuel cell application. In: Deutscher Luft- und Raumfahrt Kongress 2010, Hamburg, 2010, Deutsche Gesellschaft für Luft- und Raumfahrtforschung.
[5] Gans, H., Stolte, R.-H., Piezunka, V.: Fuel cell emergency system, US 2008/0210812 A1, 2008
[6] Hoffjann, C., Schuldzig, H.: Fuel cell system for the supply of drinking water and oxygen. US 2008/0299432 A1, 2008.
[7] Hoffjann, C., Schuldzig, H., Stolte, R.-H.: System and process for the reduction of harmful substances in engine exhaust gases. US2011/0048026 A1, 2011.
[8] Hoffjann, C., Wolff, C.: Engine for propelling an aircraft and aircraft having at least one engine and at least one hydrogen tank. US2015/0308383 A1.
[9] Wangemann, J., Lüdders, H. P., Kaiser, A.: Fuel cell system in a bipolar high-voltage network and method for operating a bipolar high-voltage network. US2015/0244277 A1.
[10] Wangemann, J., Lüdders, H. P., Zandstra, S., Drechsel, P.: Emergency power supply system, aircraft having such an emergency power supply system and a method for providing at least electric power and hydraulic power in case of an emergency in an aircraft. US 2016/0090189 A1; EP 3 001 548 A1.
[11] Kallergis, K., Beuermann, R.: Brandschutz und Brandbekämpfung im Flugzeug—Vergangenheit / Gegenwart / Zukunft. In: Deutscher Luft-und Raumfahrt Kongress 2010, Hamburg, 2010, Deutsche Gesellschaft für Luft- und Raumfahrtforschung.
[12] Law, B.: Airbus multifunctional fuel cell integration. In: Deutscher Luft- und Raumfahrt Kongress 2012, 2012, Deutsche Gesellschaft für Luft- und Raumfahrtforschung.
[13] Keim, M.: Multifunctional fuel cell system in an aircraft environment: An investigation focusing on fuel tank inerting and water generation. Aerospace Science and Technology 29 (2013).
[14] Kallo, J., Renouard-Vallet, G., Saballus, M., Schmithals, G., Schirmer, J., Friedrich, K. A.: Fuel Cell System Development and Testing for Aircraft Applications. 18th World Hydrogen Energy Conference 2010, 2010, ISBN: 978-3-89336-655-2.
[15] Lüdders, H. P., Strummel, H., Thielecke, F.: Model-based development of multifunctional fuel cell systems for More-Electric-Aircraft. CEAS Aeronaut J (2013) 4:151-174, DOI 10.1007/s13272-013-0062-3.
[16] Kaiser, A., Wangemann, J., Höger, W., Schawe, D., Design of a Lightweight DC/DC Converter Providing Fault Tolerance by Series Connection of Low Voltage Sources. More Electric Aircraft Conference, Bordeaux, 2012.
[17] Fourie, F., Andriamisaina, M., “Large aircraft integration rig and tests results”, More Electric Aircraft Forum, Barcelona, 2009.
[18] Pukrushpan, J. T., Stefanopoulou, A. G., Peng, H., “Control of Fuel Cell Power Systems”, Springer 2004, ISBN 978-1-4471-3792-4.
[19] Pukrushpan, J. T., Stefanopoulou, A. G., Peng, H., “Control of Fuel Cell Breathing: Initial Results on the Oxygen Starvation Problem“, University of Michigan, Ann Arbor.