Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32769
Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: β-TCP, bone regeneration, wet chemical processing, polymeric precipitation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1129944

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992

References:


[1] M. Winter, P. Griss, K. de Groot, H. Tagai, G. Heimke, HJ von Dijk, K Sawai. “Comparative histocompatibility testing of seven calcium phosphate ceramics”, Biomater., vol. 2, pp. 159–160, 1981.
[2] N. Passuti, G. Daculsi, J.M. Rogez, S. Martin, J.V. “Bainvel. Macroporous calcium phosphate ceramic performance in human spine fusion”. Clin. Orthop. Relat. Res., vol. 248, pp. 169-176, 1989.
[3] S-I. Roohani-Esfahani, Y.J. No, Z.F. Lu, P.Y. Ng, Y.J. Chen, J. Shi, N.J. Pavlos, H. Zreiqat. “A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration”, Biomed. Mater., vol. 11, 2016, p.035018.
[4] M. Bohner, “Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements”. Injury, vol. 31, pp. SD37-SD47, 2000.
[5] S.V. Dorozhkin, M. Epple. “Biological and medical significance of calcium phosphates”, Angew. Chem. Int. Ed. Engl., vol. 41, pp. 3130-3146, 2002.
[6] T. Takahata, T. Okihara, Y. Yoshida, K. Yoshihara, Y. Shiozaki, A. Yoshida, K. Yamane, N. Watanabe, M. Yoshimura, M. Nakamura, M. Irie, B. Van Meerbeek, M. Tanaka, T. Ozaki, A. Matsukawa. “Bone engineering by phosphorylated-pullulan and beta-TCP composite”. Biomed. Mater., vol. 10, p. 065009, 2015.
[7] G. Tozzi, A. De Mori, A. Oliveira, M. Roldo. “Composite hydrogels for bone regeneration” Mater. , vol. 9, UNSP 267, 2016.
[8] J. Kolmas, S. Krukowski, A. Laskus, M. Jurkitewicz. “Synthetic hydroxyapatite in pharmaceutical applications,” Ceram. Int., vol. 42, pp. 2472-2487, 2016.
[9] S. Utech, A.R. Boccaccini. “A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers,” J. Mater. Sci., vol. 51, pp. 271-310, 2016.
[10] R.Z. Le Geros, “Properties of osteoconductive biomaterials: calcium phosphates”. Clin. Orthop., vol. 395 pp. 81-98, 2002.
[11] D.S Metsger, T.D. Driskell, J.R. Paulsrud. “Tricalcium phosphate ceramic--a resorbable bone implant: review and current status”, J. Am. Dent. Assoc., vol. 105, pp. 1035-1038, 1982.
[12] J.X. Lu, A. Gallur, B. Flautre, K. Anselme, M. Descamps, B. Thierry, P. Hardouin. “Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits”, J. Biomed. Mater. Res., vol. 42, pp. 357–367, 1998.
[13] M. Bohner, G.H. Lenthe, S. Gruenenfelder, W. Hirsiger, R. Evison, R. Mueller., “Synthesis and characterization of porous beta-tricalcium phosphate blocks”, Biomater., vol. 26, pp. 6099–6105, 2005.
[14] DSH Lee, Y. Pai, S. Chang, D.H. Kim. “Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules”, Mater. Sci. Eng. C., vol. 58, pp. 971–976, 2016.
[15] K. Ishikawa, N. Koga, K. Tsuru, I. Takahashi. “Fabrication of interconnected porous calcite by bridging calcite granules with dicalcium phosphate dihydrate and their histological evaluation”, J. Biomed. Mater. Res. Part A., vol. 104, pp. 652-658, 2016.
[16] Y. Pan, J.L. Huang, C.Y. Shao. “Preparation of β-TCP with high thermal stability by solid reaction route”, J. Mater. Sci., vol. 38, pp. 1049–1056, 2003.
[17] J.S. Cho, D.S. Jung, J.M. Han, Y.C. Kang. “Nano-sized α and β-TCP powders prepared by high temperature flame spray pyrolysis”, Mater. Sci. Eng. C., vol. 29, pp. 1288–1292, 2009.
[18] K.P. Sanosh, M.C. Chu, A. Balakrishnan, T.N. Kim, S.J. Cho, “Sol–gel synthesis of pure nano sized b-tricalcium phosphate crystalline powders”, Curr. Appl. Phys., vol. 10, pp. 68–71, 2010.
[19] S.C. Liou, S.Y. Chen. “Transformation mechanism of different chemically precipitated apatitic precursors into β-tricalcium phosphate upon calcinations”, Biomater., vol. 23, pp. 4541–4547, 2002.
[20] D.R.R. Lazar, S.M. Cunha, V. Ussui, E. Fancio, N.B. de Lima, A.H.A. Bressiani. “Effect of calcination conditions on phase formation of calcium phosphates ceramics synthesized by homogeneous precipitation”, Mater. Sci. Forum., vol. 530, pp.612–617, 2006.
[21] M. Akao, H. Aoki, K. Kato, A. Sato. “Dence polycrystalline b-tricalcium phosphate for prosthetic applications”, J. Mater. Sci., vol. 17 343–346, 1982.
[22] A. Destainville, E. Champion, D. Bernache-Assollant, E. Laborde. “Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate”, Mater. Chem. Phys., vol. 80, pp. 269–277, 2003.
[23] S.C. Liou, S.Y. Chen, H.Y. Lee, J.S. Bow. “Structural characterization of nano-sized calcium deficient apatite powders”, Biomater., vol. 25, pp. 189–196, 2004.
[24] B. Dickens, L.W. Schroeder, W.E. Brown. “Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2”, J. Solid State Chem., vol. 10, pp. 232–248,1974.
[25] R. Jenkins, R.L. Snyder. Chemical Analysis: Introduction to X-ray Powder Diffractometry, Wiley, New York (1996) p. 90.
[26] I. Bogdanoviciene, M. Cepenko, R. Traksmaa, A. Kareiva, K. Tõnsuaadu. “Formation of Ca-Zn-Na phosphate bioceramic material in thermal processing of EDTA sol-gel precursor”, J. Therm. Anal. Calorim., vol. 121, pp. 107-114, 2015.
[27] E. Garskaite, L. Alinauskas, M. Drienovsky, J. Krajcovic, R. Cicka, M. Palcut, L. Jonusauskas, M. Malinauskas, Z. Stankeviciute, A. Kareiva. “Fabrication of composite of nanocrystalline carbonated hydroxyapatite (cHAP) with polylactic acid (PLA) and its surface topographical structuring with direct laser writing (DLW)”, RSC Adv., vol.6, ppt. 72733-72743, 2016.
[28] J. Trinkunaite-Felsen, Z. Stankeviciute, J.C. Yang, T.C.K. Yang, A. Beganskiene, A. Kareiva. “Calcium hydroxyapatite/whitlockite obtained from dairy products: simple, environmentally benign and green preparation technology”, Ceram. Int., vol. 40, pp. 12717-12722, 2014.
[29] A. Gatelyte, D. Jasaitis, A. Beganskiene, A Kareiva. “Sol-gel synthesis and characterization of selected transition metal nano-ferrites. Materials Science (Medžiagotyra)”, vol. 17, pp. 302-307, 2011.
[30] S. Hosseini, H. Naderi-Manesh, H. Vali, S. Faghihi. “Improved surface bioactivity of stainless steel substrates using osyeocalcin mimetic peptide”, Mater. Chem. Phys., vol. 143, pp. 1364-1371, 2014.
[31] M.Koizhaiganova, I. Yasa, G. Gulumser. “Characterization and antimicrobial activity of silver doped hydroxyapatite obtained by the microwave method. Materials Science (Medžiagotyra)”, vol. 22, pp. 403-408, 2016.