WASET
	%0 Journal Article
	%A Murray L. Ireland and  Kevin J. Worrall and  Rebecca Mackenzie and  Thaleia Flessa and  Euan McGookin and  Douglas Thomson
	%D 2017
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 123, 2017
	%T A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method
	%U https://publications.waset.org/pdf/10006702
	%V 123
	%X Robotic rovers which are designed to work in
extra-terrestrial environments present a unique challenge in terms
of the reliability and availability of systems throughout the mission.
Should some fault occur, with the nearest human potentially millions
of kilometres away, detection and identification of the fault must
be performed solely by the robot and its subsystems. Faults in
the system sensors are relatively straightforward to detect, through
the residuals produced by comparison of the system output with
that of a simple model. However, faults in the input, that is, the
actuators of the system, are harder to detect. A step change in
the input signal, caused potentially by the loss of an actuator,
can propagate through the system, resulting in complex residuals
in multiple outputs. These residuals can be difficult to isolate or
distinguish from residuals caused by environmental disturbances.
While a more complex fault detection method or additional sensors
could be used to solve these issues, an alternative is presented here.
Using inverse simulation (InvSim), the inputs and outputs of the
mathematical model of the rover system are reversed. Thus, for a
desired trajectory, the corresponding actuator inputs are obtained.
A step fault near the input then manifests itself as a step change
in the residual between the system inputs and the input trajectory
obtained through inverse simulation. This approach avoids the need
for additional hardware on a mass- and power-critical system such
as the rover. The InvSim fault detection method is applied to a
simple four-wheeled rover in simulation. Additive system faults and
an external disturbance force and are applied to the vehicle in turn,
such that the dynamic response and sensor output of the rover
are impacted. Basic model-based fault detection is then employed
to provide output residuals which may be analysed to provide
information on the fault/disturbance. InvSim-based fault detection
is then employed, similarly providing input residuals which provide
further information on the fault/disturbance. The input residuals are
shown to provide clearer information on the location and magnitude
of an input fault than the output residuals. Additionally, they can
allow faults to be more clearly discriminated from environmental
disturbances.
	%P 607 - 615