Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique

Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue

Abstract:

Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.

Keywords: Atomic layer deposition, tungsten oxide, WO3, two-dimensional semiconductors, single fundamental layer.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1339648

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567

References:


[1] C. G. Granquist, Electrochromic tungsten oxide films: Review of progress 1993-1998, Sol. Energy. Mater Sol. Cells 60 (2000) 201-262.
[2] S. Yoon, S.-G. Woo, K.-N. Jung, H. Song, Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries, J. Alloys. Comp. 613 (2014) 187-192.
[3] S. H. Lee, R. Deshpandle, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications, Adv. Mater. 18 (2006) 763-766.
[4] S. Kim, S. Park, S. Park, C. Lee, Acetone sensing of Au and Pd-decorated WO3 nanorod sensors, Sens. Actuators B: Chem. 209 (2015) 180-185.
[5] S. Zhuiykov, Morphology and sensing characteristics of nanostructured RuO2 electrodes for integrated water quality monitoring sensors, Electrochem. Comm. 10 (2008) 839-843.
[6] J. Z. Ou et al. Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property, Electrochem. Comm. 27 (2013) 128-132.
[7] D. J. Ham, A. Phuruangrat, S. Thongtem, J. S. Lee, Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water, Chem. Eng. J. 165 (2010) 365-369.
[8] A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guerin, K. Aguir, M. Maaref, Impedance spectroscopy on WO3 gas sensor, Sens. Actuators B: Chem. 106 (2005) 713-718.
[9] S. Zhuiykov, E. Kats, B. Carey, S. Balendhran, Proton intercalated two-dimensional WO3 nano-flakes with enhanced charge-carrier mobility at room temperature, Nanoscale 6 (2014) 109-133.
[10] K. Kalantar-zadeh, A. Vijayaraghavan, M. H. Ham, H. Zheng, M. Breedon, M. S. Strano, Synthesis of atomically thin WO3 sheets from hydrated tungsten trioxide, Chem. Mater. 22 (2010) 5660-5666.
[11] E. Nguyen, T. Daeneke, S. Zhuiykov, K. Kalantar-zadeh, Liquid Exfoliation of layered transition metal dichalcogenides for biological applications, Current Prot. Chem. Biol. 8 (2016) 97-108.
[12] S. Balendhran, S. Walia, M. Alsaif, J.Z. Ou, S. Zhuiykov, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Field effect biosensing platform based on 2D α-MoO3, ACS Nano. 7 (2013) 9753-9760.
[13] S. Moitzheim et al. Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries, Nanotechnology. 25 (2014) 504008.
[14] P. Tagtstrm, P. Martersson, U. Jansson, J.-O. Carlsson, Atomic layer epitaxy of tungsten oxide Films using oxyfluorides as metal precursors, J. Electrochem. Soc. 146 (1999) 3139-3143.
[15] M. T. Chang et al. Nitrogen-Doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties, Small. 3 (2007) 658-664.
[16] S. Balaji, Y. Djaoued, A. S. Albert, R.Z. Ferguson, R. Bruning, Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows, Chem. Mater. 21 (2009) 1381-1389.
[17] M. Sze, K. N. Kwok, Physics of semiconductor devices, Wiley, 2006.
[18] J. C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys. 2 (2000) 1319-1324.
[19] J. Liu, M. Zhong, J. Li, A. Pan, X. Zhu, Few-layer WO3 nanosheets for high-performance UV-photodetectors, Mat. Lett. 148 (2015) 184-187.
[20] Juan, Y. M. et al. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell. Sens. Actuat. B: Chem. 219 (2015) 43–49.
[21] L. Hu et al. An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt, Adv. Mater. 24 (2012) 2305-2309.
[22] Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6 (2012) 74–80.