Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32795
Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives

Authors: Kakali Bhadra

Abstract:

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

Keywords: Apoptosis, beta carboline alkaloid, comet assay, cytotoxicity, ROS.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1128071

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117

References:


[1] M. F. Roberts, and M. Wink, in: M. F. Roberts, M. Wink, editors, Ecology and medicinal applications, alkaloids, New York, London: Plenum Press; Biochemistry (1998) 1.
[2] K. Bhadra, G. Suresh Kumar, Therapeutic potential of nucleic acid binding isoquinoline alkaloids: Binding aspects and implications for drug design, Med. Res. Rev. 31 (2011) 821-862.
[3] R. Ali, Z. Mirza, G. M. Ashraf, M. A. Kamal, S. A. Ansari, G. A. Damanhouri, A. M. Abuzenadah, A. G. Chaudhary, I. A. Sheikh, New anticancer agents: recent developments in tumor therapy, Anticancer Res. 32 (2012) 2999-3005.
[4] M. Moudi, R. Go, C. Y. S. Yien, M. Nazre, Vinca Alkaloids, Int. J. Prev. Med. 4 (2013) 1231–1235.
[5] S. Sarkar, K. Bhadra, Binding of alkaloid harmalol to DNA: photophysical and calorimetric approaches, J. Photochem. Photobiol. B. 130 (2014) 272-80.
[6] S. Sarkar, P. Pandya, K. Bhadra, Sequence specific binding of beta carboline alkaloid harmalol with deoxyribonucleotides: Binding heterogeneity, conformational, thermodynamic and cytotoxic aspects, Plos One (2014) DOI: 10.1371/journal.pone.0108022.
[7] P. Bhattacharjee, S. Sarkar, P. Pandya, K. Bhadra, Targeting different RNA motifs by beta carboline alkaloid, harmalol: A comparative photophysical, calorimetric and molecular docking approach, J. Biomol. Struct. Dyn. (2015) DOI:10.1080/07391102.2015.1126694.
[8] D.H. Aarons, G.V. Rossi, R.F. Orzechowski, Cardiovascular actions of three harmala alkaloids: harmine, harmaline and harmalol, J. Pharm. Sci. 66 (1977) 1244–1248.
[9] M. Mahmoudian, H. Jalilpour, P. Salehian, Toxicity of Peganum harmala: review and a case report, Iran J. Pharmacol. Therap. 1 (2002) 1–4.
[10] R. Cao, W. Peng, Z. Wang, A. Xu, β-Carboline alkaloids: biochemical and pharmacological functions, Curr. Med. Chem. 14 (2007) 479–500.
[11] T. Herraiz, Identification and occurrence of beta-carboline alkaloids in raisins and inhibition of monoamine oxidase (MAO), J. Agric. Food Chem. 55(2007) 8534–8540.
[12] T. Uezono, W. Maruyama, K. Matsubara, M. Naoi, K. Shimizu, O. Saito, Norharman an indoleamine-derived betacarboline, but not Trp-P-2, a gamma-carboline, induces apoptotic cell death in human neuroblantoma SH-SY5Y cells, J. Neural Transm. 108 (2001) 943-953.
[13] F. Lamchouri, M. Zemzami, A. Jossang, A. Settaf, Z. H. Israili, B. Lyoussi, Cytotoxicity of alkaloids isolated from Peganum harmala seeds, Pak. J. Pharm. Sci. 26 (2013) 699-706.
[14] D.L. Bemis, J.L. Capodice, P. Gorroochurn, A.E. Katz, R. Buttyan, Anti-prostate cancer activity of a beta-carboline alkaloid enriched extract from Rauwolfia vomitoria, Int. J. Oncol. 29 (2006) 1065-1073.
[15] S. Chatterjee, S. Mallick, F. Buzzetti, G. Fiorillo, T. M. Syeda, P. Lombardi, K. Das Saha, G. Suresh Kumar, New 13-pyridinealkyl berberine analoguesintercalate to DNA and induce apoptosis in HepG2 and MCF-7 cells through ROS mediated p53 dependent pathway: biophysical, biochemical and molecular modeling studies, RSC Advances. 5 (2015) 90632-90644.
[16] S. Mallick, P. Ghosh, S. K. Samanta, S. Kinra, B. C. Pal, A. Gomes, J. R. Vedasiromoni, Corchorusin-D, a saikosaponin-like compound isolated from Corchorus acutangulus Lam., targets mitochondrial apoptotic pathways in leukemic cell lines (HL-60 and U937), Cancer Chemother. Pharmacol., 66 (2010) 709–719.
[17] N. Morley, A. Rapp, H. Dittmar, L. Salter, D. Gould, K.O. Greulich, A. Curnow, UVA-induced apoptosis studied by the new apo/necro-Comet-assay which distinguishes viable, apoptotic and necrotic cells, Mutagenesis 21 (2006) 105–114.
[18] K. Bhadra, M. Maiti, G. Suresh Kumar, Thermodynamics of the binding of cytotoxic protoberberine molecule coralyne to deoxyribonucleic acids, Biochim. Biophys. Acta 1780 (2008) 298-306.
[19] W. Zhong, J.S. Yu, Y. Liang, K. Fan, L. Lai, Chlorobenzylidine-calf thymus DNA interaction II: circular dichroism and nuclear magnetic resonance studies, Spectrochim. Acta A. 60 (2004) 2985–2992.
[20] J.D. McGhee, Theoretical calculations of helix-coil transition of DNA in the presence of large, cooperatively binding ligands, Biopolymers 15 (1976) 1345–1375.
[21] A. M. El Gendy, A. A. Soshilov, M. S. Denison, O. S. El-Kadi, Transcriptional and posttranslational inhibition of dioxin-mediated induction of CYP1A1 by harmine and harmol, Toxicol Lett. 208 (2012) 51–61.
[22] J. N. Picada, K. V. C. L. da Silva, E. D. Erdtmann, A. T. Henriques, J.A.P. Henriques, Genotoxic effects of structurally related β-carboline alkaloids, Mutat. Res. 379 (1997) 135–149.
[23] D. J. Moura, M. F. Richter, J. M. Boeira, J. A. P. Henriques, J. Saffi, Antioxidant properties of β-carboline alkaloids are related to their antimutagenic and antigenotoxic activities, Mutagenesis 22 (2007) 293–302.
[24] S. Elmore, Apoptosis: A Review of Programmed Cell Death, Toxicol. Pathol. 35 (2007) 495–516.
[25] A. H. Wyllie, The genetic regulation of apoptosis, Curr. Opin. Genet. Dev. 5 (1995) 97–104.
[26] J. Das, S. Das, A. Samadder, K. Bhadra, A. R. Khuda-Bukhsh, Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells, European J. of Pharma. Sci. 47 (2012) 313–324.