Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32769
Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete

Authors: Muhammet M. Erdem, Erdoğan Özbay, Ibrahim H. Durmuş, Mustafa Erdemir, Murat Bikçe, Müzeyyen Balçıkanlı

Abstract:

In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents’ temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 °C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO2/Na2O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed.

Keywords: Alkali activation, slag, rheology, yield stress, plastic viscosity.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1127322

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029

References:


[1] D.M. Roy, Alkali-activated cements opportunities and challenges, Cement and Concrete Research 29 (2) (1999) 249–254. doi:10.1016/S0008-8846(98)00093-3
[2] S.A Bernal, R.M.D. Gutiérrez, A.L. Pedraza, J.L. Provis, E.D. Rodriguez, S. Delvasto, Effect of binder content on the performance of alkali-activated slag concretes, Cement and Concrete Research, 41 (1) (2011) 1–8. doi:10.1016/j.cemconres.2010.08.017
[3] F. Puertas, A. Fernandez-Jimenez, Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cement and Concrete Composites, 25 (3) (2003) 287–92. doi:10.1016/S0958-9465(02)00059-8
[4] F. Puertas, T. Amat, A. Fernandez-Jimenez, T Vazquez, Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres, Cement and Concrete Research, 33 (12) (2003) 2031–2036. doi:10.1016/S0008-8846(03)00222-9
[5] M. Chi, Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete, Construction and Building Materials 35 (2012) 240–245. doi:10.1016/j.conbuildmat.2012.04.005
[6] C. Li, H. Sun, L. Li, A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+Al) cements, Cement and Concrete Research 40 (9) (2010) 1341–1349. doi:10.1016/j.cemconres.2010.03.020
[7] A.A. Adam, Strength and Durability Properties of Alkali Activated Slag and Fly Ash-Based Geopolymer Concrete. Master Thesis, School of Civil, Environmental and Chemical Engineering RMIT University Melbourne, Australia, August 2009
[8] A.O. Purdon, The action of alkalis on blast furnace slag. Journal of the Society of the Chemical Industry, 59, 191-202, (1940)
[9] Y.Y. Kim, B.J. Lee, V. Saraswathy, S. J. Kwon, Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar, The Scientific World Journal, 2014 (2014) Article ID 209584, 10 pages. http://dx.doi.org/10.1155/2014/209584
[10] F. Pacheco-Torgal, Z. Abdollahnejad, A.F. Camoes, M. Jamshidi, Y. Ding, Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?, Construction and Building Materials, 30 (2012),. 400–405 doi:10.1016/j.conbuildmat.2011.12.017
[11] K. Arbi, M. Nedeljkovic, Y. Zuo, S. Grünewald, A. Keulen, G. Ye, Experimental Study On Workability Of Alkali Activated Fly Ash And Slag-Based Geopolymer Concretes, Geopolymers 2015, An ECI Conference
[12] J.G. Jang, N.K. Lee, H.K. Lee, Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers, Construction and Building Materials, 50 (2014) 169–176 doi:10.1016/j.conbuildmat.2013.09.048
[13] M. Romagnoli, C. Leonelli, E. Kamse, M.L. Gualtieri, Rheology of geopolymer by DOE approach, Construction and Building Materials, 36 (2012) 251–258. doi:10.1016/j.conbuildmat.2012.04.122
[14] M. Sayed, S.R. Zeedan, Green binding material using alkali activated blast furnace slag with silica fume, HBRC Journal, 8 (3) (2012) 177–184. doi:10.1016/j.hbrcj.2012.10.003
[15] F. Puertas, A.F. Jimenez, M.T. Blanco-Varela, Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate, Cement and Concrete Research, 34 (1) (2004) 139–148. doi:10.1016/S0008-8846(03)00254-0
[16] F. Škvára, J. Šlosar, J. Bohunek, A. Marková, Alkali-activated fly ash geopolymeric materials, Proceedings of the 11th international congress on the chemistry of cement (ICCC), Durban South Africa; 2003.
[17] A. Palomo, P.F.G. Banfill, A. Fernández-Jiménez, D.S. Swift, Properties of alkali-activated fly ashes determined from rheological measurements, Advances in Cement Research, 17 (4) (2005) 143-151.
[18] D.M. Roy, G.M. ldorn, Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete, ACI Journal, 79 (1982) 444-457
[19] X.C. Pu, C.C. Gan, S.D. Wang, C.H. Yang, Summary reports of research on alkali-activated slag cement and concrete, Chongqing Institute of Architecture and Engineering, Chongqing (1988) V.1-6
[20] F.G. Collins, J.G. Sanjayan, Workability and mechanical properties of alkali activated slag concrete, Cement and Concrete Research, 29 (3) (1999) 455–458
[21] H. Jansson, L. Tang, The initial setting time of ground granulated blastfurnace slag GGBS and its relation to the modulus of the alkali-activating solution, Proceeding of the XXII Nordic Concrete Research Symposium (NCR), Reykjavik, Iceland, (2014).
[22] S.A. Bernal, J.L. Provis, V. Rose, R. Mejia de Gutierrez, Evolution of binder structure in sodium silicate-activated slag-metakaolin blends, Cement and Concrete Composites 33(1) (2011) 46-54
[23] H. Jansson, D. Bernin, K. Ramser, Silicate species of water glass and insights for alkali-activated green cement, AIP Advances, Vol: 5, No: 6, 067167 (2015)
[24] D. Krizan, B. Zivanovic, Effects of dosage and modulus of water glass on early hydration of alkali–slag cements, Cement and Concrete Research, 32 (8) (2002) 1181-1188
[25] M. Torres-Carrasco, C. Rodríguez-Puertas, M.M. Alonso, F. Puertas, Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour, Boletín De La Sociedad Española De Cerámica Y Vidrio, 54 (2) (2015) 54-57 doi:10.1016/j.bsecv.2015.03.004
[26] M. Palacios, Phillip F.G. Banfill, F. Puertas, Rheology and Setting of Alkali- Activated Slag Pastes and Mortars: Effect of Organic Admixture, ACI Materials Journal, 105 (2) (2008) 140-148
[27] F. Puertas, C. Varga, M.M. Alonso, Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution, Cement and Concrete Composites, 53 (2014) 279-288 doi:10.1016/j.cemconcomp.2014.07.012