Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1127206

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298

References:


[1] K. S. Park, M. I. Kim, D. Y. Cho, and H. G. Park, “Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles,” Small, vol. 7, pp. 1521-1525, Apr. 2011.
[2] M. I. Kim, Y. Ye, B. Y. Won, S. Shin, J. Lee, and H. G. Park, “A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam,” Adv. Funct. Mater., vol. 21, pp. 2868-2875, May 2011.
[3] M. I. Kim, J. Shim, T. Li, M. A. Woo, D. Cho, J. Lee, and H. G. Park, “Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics,” Analyst, vol. 137, pp. 1137-1143, Mar 2012.
[4] M. A. Woo, M. I. Kim, J. H. Jung, K. S. Park, T. S. Seo, and H. G. Park, “A novel colorimetric immunoassay utilizing the peroxidase mimicking activity of magnetic nanoparticles,” Int. J. Mol. Sci., vol. 14, pp. 9999-10014, May 2013.
[5] A. I. Liapis, “Theoretical aspects of affinity chromatography,” J. Biotechnology, vol. 11, pp. 143-160, Aug. 1989.
[6] T. Sun, G. Chen, and Y. Liu, “Purification of human prothrombin from Nitschmann fraction III: using DEAE membrane radial flow chromatography,” J. Chromatogr. B, vol. 742, pp. 109-114., May 2000.
[7] C. Cabanne, M. Raedts, E. Zavadzky, and X. Santarelli, “Evaluation of radial chromatography versus axial chromatography, practical approach,” J Chromatogr B., vol. 845, pp. 191-199, Jan. 2007.
[8] R. R. Hu, Z. Z. Yin, Y. B. Zeng, J. Zhang, H. Q. Liu, Y. Shao, S. B. Ren, and L. Li, “A novel biosensor for Escherichia coli O157:H7 based on fluorescein-releasable biolabels,” Biosensors and Bioelectronics, vol. 78, pp. 31-36, Apr. 2016.
[9] R. V. Mehta, R. V. Upadhyay, S. W. Charles, and C. N. Ramchand, “Direct binding of protein to magnetic particles,” Biotechnol. Tech., vol. 11, pp. 493-496, July 1997.
[10] A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: Synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl., vol. 46, pp. 1222-1244, Feb. 2007.
[11] F. Gao, B. F. Pan, W. M. Zheng, L. M. Ao, and H. C. Gu, “Study of streptavidin coated onto PAMAM dendrimer modified magnetite nanoparticles,” J. Magn. Magn. Mater., vol. 293, pp. 48-54, Mar. 2005.