WASET
	%0 Journal Article
	%A Hoai Nam Huynh and  Edouard Rivière-Lorphèvre and  Olivier Verlinden
	%D 2016
	%J International Journal of Industrial and Manufacturing Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 117, 2016
	%T Milling Simulations with a 3-DOF Flexible Planar Robot
	%U https://publications.waset.org/pdf/10005426
	%V 117
	%X Manufacturing technologies are becoming continuously
more diversified over the years. The increasing use of robots for
various applications such as assembling, painting, welding has also
affected the field of machining. Machining robots can deal with
larger workspaces than conventional machine-tools at a lower cost
and thus represent a very promising alternative for machining
applications. Furthermore, their inherent structure ensures them a
great flexibility of motion to reach any location on the workpiece with
the desired orientation. Nevertheless, machining robots suffer from
a lack of stiffness at their joints restricting their use to applications
involving low cutting forces especially finishing operations. Vibratory
instabilities may also happen while machining and deteriorate the
precision leading to scrap parts. Some researchers are therefore
concerned with the identification of optimal parameters in robotic
machining. This paper continues the development of a virtual robotic
machining simulator in order to find optimized cutting parameters in
terms of depth of cut or feed per tooth for example. The simulation
environment combines an in-house milling routine (DyStaMill)
achieving the computation of cutting forces and material removal
with an in-house multibody library (EasyDyn) which is used to
build a dynamic model of a 3-DOF planar robot with flexible links.
The position of the robot end-effector submitted to milling forces is
controlled through an inverse kinematics scheme while controlling
the position of its joints separately. Each joint is actuated through
a servomotor for which the transfer function has been computed
in order to tune the corresponding controller. The output results
feature the evolution of the cutting forces when the robot structure
is deformable or not and the tracking errors of the end-effector.
Illustrations of the resulting machined surfaces are also presented.
The consideration of the links flexibility has highlighted an increase
of the cutting forces magnitude. This proof of concept will aim
to enrich the database of results in robotic machining for potential
improvements in production.
	%P 1661 - 1670