Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint

Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier

Abstract:

Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.

Keywords: Biogas, cover crops, catch crops, land use competition, sustainable agriculture.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1126493

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244

References:

K. Möller, G. Leithold, J. Michel, S. Schnell, W. Stinner and A. Weiske, "Auswirkung der Fermentation biogener Rückstände in Biogasanlagen auf Flächenproduktivität und Umweltverträglichkeit im Ökologischen Landbau - Pflanzenbauliche, ökonomische und ökologische Gesamtbewertung im Rahmen typischer Fruchtfolgen viehhaltender und viehloser ökologisch wirtschaftender Betriebe. Endbericht.," Osnabrück: DBU, 2006,
[2] A. Deuker, W. Stinner and G. Leithold, "Biogas Energy from Agricultural By-Products: Energy Yields and Effects on Organic Farming Systems Compared with Energy Maize Cropping," Netherlands: Springer, 2010, pp. 269-279.
[3] C. Berendonk, "Zwischenfrüchte als Futter oder Biomasse," Landwirtschaftskammer Nordrhein-Westfalen, 2012, (2014-06-29) Available online at: http://www.landwirtschaftskammer.de/ landwirtschaft/ackerbau/zwischenfruechte/zf-futter-biogas.htm
[4] S. Hötte, G. Stemann and N. Lütke-Entrup, "Zwischenfrüchte für die Biogasanlage? Energetische Leistung je Hektar steigt," 2009, Mais 2, 36 pp. 106-109.
[5] A. Aigner, E. Sticksel and S. Hartmann, "Derzeitige Einschätzung von Zwischenfrüchten als Substrat zur Biogasgewinnung," LfL Bayern, 2008, (2008-05-16) Available online at: http://www.lfl.bayern.de/ipz/pflanzenbau_biogas/30222/zwischenfrucht_fuer_biogas_ii.pdf
[6] H. Koch, "Zwischenfrüchte nutzen und Ertrag steigern.," Linz: Arge Kompost & Biogas Österreich, 2009, Input 1, 09 pp. 30-33. (2014-05-04) Available online at: http://www.abel-retec.de/ cms/upload/PDFs/Biogas/Zwischenfruchtanbau_fuer_Biogasanlagen.pd
[7] R. Neff, "Biogaspotential einiger landwirtschaftlicher Kulturen - Versuchsergebnisse," Witzenhausen: Kompetenzzentrum HessenRohstoffe (HeRo) e. V.; Witzenhausen-Institut für Abfall, Umwelt und Energie GmbH, 2007, pp. 28-34.
[8] FNR, "Standortangepasste Anbausysteme für Energiepflanzen. Ergebnisse des Verbundprojektes „Entwicklung und Vergleich von optimierten Anbausystemen für die landwirtschaftliche Produktion von Energiepflanzen unter denverschiedenen Standortbedingungen Deutschlands, EVA I"," Gülzow: Hrsg.: Fachagentur Nachwachsende Rohstoffe, 2010, (2010-07-08) Available online at: http://www.fnr-server.de/ftp/pdf/literatur/pdf_335-eva_2010.pdf
[9] TFZ, "Eignung von Buchweizen und Quinoa als späte Zweitfrüchte für die Biogasnutzung," Straubing: Technologie- und Förderzentrum, 2011, (2014-10-08) Available online at: http://www.tfz.bayern.de/rohstoffpflanzen/einjaehrigekulturen/035726/index.php
[10] B. Molinuevo-Salces, S. U. Larsen, B. K. Ahring and H. Uellendahl, "Biogas production from catch crops: Evaluation of biomass yield and methane potential of catch crops in organic crop rotations," 2013, Biomass and Bioenergy 59, pp. 285-292.
[11] P. Peu, S. Picard, R. Girault, J. Labreuche, F. Béline and P. Dabert, "Catch crops for agricultural biogas production, case study for Brassicaceae sp. IWA," 2013, (2013-11-16) Available online at: http://www.redbiogas.cl/wordpress/wp-content/uploads/2013/ 07/IWA-11151.pdf
[12] S. MARSAC, "French double cropping systems assessment for both biogas and food use. Presentation at "Biogas Science 2014" 27.-.29. 10. 2014," Vienna: University of Natural Resources and Life Sciences, 2014,
[13] V. Brant, J. Pivec, P. Fuksa, K. Neckar, D. Kocourkova and V. Venclova, "Biomass and energy production of catch crops in areas with deficiency of precipitation during summer period in central Bohemia," 2011, Biomass and Bioenergy 35, pp. 1286 -1294.
[14] M. T. Firrisa, I. van Duren and A. Voinov, "Energy efficiency for rapeseed biodiesel production in different farming systems," 2013, Energy Efficiency 7, 1 pp. 79-95.
[15] T. Senn and S. F. Luca, "Studie zur Bioethanolproduktion aus Getreide in Anlagen mit einer Jahres-Produktionskapazität von 2, 5, und 9 Mio. Litern. Eine Energie- und Kostenbilanzierung. Erstellt im Autrag von: Bundesverband landwirtschaftliche Rohstoffe verarbeitende Brennereien e. V.," 2003, (2014-06-29) Available online at: https://www.uni-hohenheim.de/gaerung/dateien/Gesamtstudie%20120503.pdf
[16] FNR, "Basisdaten Bioenergie Deutschland. Festbrennstoffe, Biokraftstoffe, Biogas," Gülzow: Hrsg.: Fachagentur Nachwachsende Rohstoffe, 2014, (2014-11-04) available online at: http://mediathek.fnr.de/media/downloadable/files/samples/b/a/basisdaten_9x16_2014_web.pdf