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Free Vibration Analysis of Conical Helicoidal Rods
Having Elliptical Cross Sections Positioned in
Different Orientation

Merve Ermis, Akif Kutlu, Nihal Eratli, Mehmet H. Omurtag

Abstract—In this study, the free vibration analysis of conical
helicoidal rods with two different elliptically oriented cross sections
is investigated and the results are compared by the circular cross-
section keeping the net area for all cases equal to each other.
Problems are solved by using the mixed finite element formulation.
Element matrices based on Timoshenko beam theory are employed.
The finite element matrices are derived by directly inserting the
analytical expressions (arc length, curvature, and torsion) defining
helix geometry into the formulation. Helicoidal rod domain is
discretized by a two-noded curvilinear element. Each node of the
element has 12 DOFs, namely, three translations, three rotations, two
shear forces, one axial force, two bending moments and one torque.
A parametric study is performed to investigate the influence of
elliptical cross sectional geometry and its orientation over the natural
frequencies of the conical type helicoidal rod.

Keywords—Conical helix, elliptical cross section, finite element,
free vibration.

[. INTRODUCTION

HE number of researches about circular or non-circular

helicoidal geometry has been increased and some of these
studies are about double helix-DNA [1], carbon nanotubes [2],
fibers [3], polymers [4], dampers [5], and staircases [6] etc.
Helicoidal rods are also preferred for various applications,
such as, to support mechanical equipment, to transfer the
forces, absorb the energy or reduce the vibration in structural
system, to be used as steam generators in nuclear industries,
and helical actuators used to manage thermal heating in smart
material applications, etc. In the literature, the theoretical and
numerical studies exist on the static/dynamic analyses of
elastic helices having circular or rectangular cross-sections. In
some of these studies, [7] studied the dynamic analysis of
helical rods based on the exact differential equations
governing static behavior of an infinitesimal element by using
the finite element method (FEM). The static analysis of
circular and non-circular helices having rectangular cross-
section is investigated by using the mixed FEM in [8].
References [9], [10] applied to investigate the static or
dynamic analysis of helices by the transfer matrix method.
The free vibration analysis of a circular helicoidal bar is
studied by using both the dynamic transport matrix method
and the finite element method in [11]. Reference [12]
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employed the exact element method for the static analysis of
helicoidal structures of variable cross section. The
pseudospectral method is used to investigate the free vibration
analysis of cylindrical helical springs with circular cross-
sections in [13]. Considering the warping deformations of the
cross-section, free vibration analysis of naturally curved and
twisted beams are investigated by using the analytical study in
[14]. The cylindrical and non-cylindrical helicoidal rods
having thin-thick walled circular and non-circular cross
sections, equilateral triangular, cruciform and composite cross
sections are studied by using the mixed FEM in [15], [16].

In this study, the both curvatures and the arc length of
helicoidal geometry are directly taken into account in the
mixed FE formulation, and it is applied to dynamic analysis of
viscoelastic helicoidal rods in [17], [18]. By using the
Timoshenko beam theory adapted mixed FE formulation, the
free vibration analysis of conical helicoidal rods having
elliptical cross sections is solved. As a parametric study, the
influence of the orientation of elliptical cross-sections on the
natural frequencies is investigated. Also, the fundamental
natural frequencies of elliptical cross sections are compared
with the circular cross section keeping the cross sectional area
constant for both cases. Some benchmark examples are
presented for the literature.
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Fig. 1 Conical helix and cross-sectional geometries @ = 5mm,

b=25mm and r =3.53553mm
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II. FORMULATION

A. Helix Geometry and Functional
The parametrical representation of helical geometry can be
given as: X=R(@)cosp, Yy=R(p)singp, z=p(p)e,
p(p)=R(@)tana, horizontal angle @, the pitch angle and
the centerline radius R (@), the step for unit angle of the helix

p(@) . By usingc(p)=+/R2(¢)+ p*(¢) , the infinitesimal arc
length becomes ds = ¢(¢)d¢ .The radius of conical helix

R(w): Rmax+(Rmin_Rmax)¢/2nﬂ- (1)

where R and R, are the bottom and top radius,

respectively (see Fig. 1).

In the Frenet coordinate system for the helix geometry,
based on Timoshenko beam theory the field equations, exist in
[10], can be given in the form

-T,—q+pAii=0
* . )
~M, —txT-m+pIQ=0
u, +txQ-C,T=0
3)
Q. -CM=0

where the accelerations of the displacement i and rotations
u(U;,u,,Uy), the
Q(Q2,,02,,02,), the vector
M(M,M,,M,), the

material density p, the area of the cross section A, the

Q  vectors, the displacement vector

rotational  vector force

T(T,,T,,T,), the moment vector

moments of inertia I, and compliance matrices, C, and C,,
the distributed external force ¢ and moment m vectors,

respectively. In the free vibration analysis, considering the
harmonic motion, it is obvious that q =m=0. Incorporating

Gateaux differential with potential operator concept [19]
yields the functional in terms of (2), (3)

I(y):—{u,i—:}+[th,T]—{({i—l\:,

1 1 1
-= I,T|-—pAw? ——p *[IQ,Q
2[C7 , ] pAw [u,u] pa)[ , ]

—[q,“]—[msQ]Jr[(T—T),u] +[(M—M),QJ

o o

1
Q} —E[CK M, M]
4

+[ﬁ,T]£+[Q,Ml

where square brackets indicate the inner product, the terms
with hats are known values on the boundary and the subscripts
¢ and o represent the geometric and dynamic boundary
conditions, respectively.
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B. The Mixed FE Method and Free Vibration Analysis
¢ =(p;—0)/ Ap
¢, =(p—¢)/ Ap are employed, where Ap=(p;—¢). A
two-noded curvilinear element is used to discretize the
helicoidal rod domain, where the subscripts i and j shows the
node numbers of the element. The degree of freedom (DOF)
of the curved element is 24, where each node of the element
has 12 DOFs. The variable vectors are u,Q, T, M for per
node. The curvatures and arc length of the helix are directly
taken into consideration through the mixed FE formulation
[11], [12].

The problem of determining the natural frequencies of a
structural system reduces to the solution of a standard
eigenvalue problem ([K]-@*[M]){u}={0}, where the

system matrix [K], the mass matrix [M], the eigenvector

Linear  shape  functions, and

(mode shape) uand the natural angular frequency wof the
system. In the mixed formulation, the explicit form of standard
eigenvalue problem can be given as

H[Kn] [Ku]}_aﬂ {[0] [0] D {{F}}: {{0}} )
Kyl [Ky] (0] [M]])[{U}] ({0}
where the nodal force and the moment vectors {F},and, the

nodal displacement and rotation vectors{U}={u Q}". In
order to attain  consistency between (5) and
([K]-@*[M]){u}={0}, the {F} is eliminated in (5), which
yields to the condensed system matrix
[K'1=[Ku]-[K: 'K ' [K;] . In the mixed formulation,

the eigenvalue problem becomes ([K*]- w?[M]){U}={0} .

III. NUMERICAL EXAMPLE

This is a parametric study of a conical helix, which has
three different cross-sections (circular and two different
elliptical orientations), three different number of active turns
(n=2,4,6), and three different pitch angles. The objective of

this study is to investigate the influence of the above cited
geometric properties on the natural frequency of the conical
helix. Helicoidal rod is clamped at both ends. The orientations
of the two different elliptical cross sections are as shown in
(see Figs. 1 (b), (c)). The abbreviations "ellipse n" and
"ellipse_b" are used elliptical cross sections with long side
oriented horizontal and vertical direction, respectively. The
natural frequencies of the conical helix having the elliptical
cross sections are compared with the results of the circular
cross section. The net areas of the all three cross-sectional
geometries are equal to each other.

The material and geometric properties of the helix are as
follows: the modulus of elasticity is E =206GPa, Poisson's

ratio is 0=0.3, density of material is p =7850kg/m?, the
taper ratio R, /R, 0.5where R, =100mm . The three

different number of active turns and the height of the helix are
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n=2,4,6, and H =200,400,600mm, respectively. The

cross-sectional dimensions of the circular and elliptical cross
sections are a=5mm and b=2.5mm; r=3.53553mm (see

Figs. 1 (b)-(d)). The torsional moment of inertia [14] for an
elliptical cross section is given as

a3b3
r—
az+b?

- ©)

The natural frequencies of the conical helix having circular
cross section are obtained via the mixed finite element and
these results are compared for first six natural frequencies with
the commercial programSAP2000 and verified. The
convergence by the present study and the SAP2000 is given
for the fundamental natural frequency in Fig. 2. In this study
200 mixed finite element results are compared by the 1000
displacement type SAP2000 elements. The normalized percent
differences between these two finite elements models are
calculated and the results are tabulated in Tables I-III, where
the absolute maximum percent difference is 0.38%. The
natural frequencies of elliptical cross sections ("ellipse n",
"ellipse_b") and the percent differences normalized in case of
"ellipse_n" with respect to "ellipse b" are also given in Tables
IV-VL
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Fig. 2 The convergence analysis for @ fundamental frequency of the
conical helix having circular cross section for the number of active
turn n=4 and the height H=400 mm (see Table II)

The fundamental natural frequencies decrease by increasing
the number of active turnsn for each value of
H =200, 400, 600mm (see Tables I-VI). The fundamental

natural frequency values of Nn=4,6 are normalized with
respect to N=2 that correspond H =200, 400, 600mm and

the decrease of the percent differences are given in Table VII
for all type of cross-sections. The fundamental natural
frequencies decrease by increasing the height H for each value
of Nn=2,4,6 (see Tables I-VI). The fundamental natural

frequency values of H =400,600mm are normalized with
respect to H =200mm that correspond N=2,4,6 and the

decrease of the percent differences are tabulated in Table VIII
for all type of cross-sections.

The fundamental natural frequencies of the conical helix are
normalized with respect to the results of circular cross-section
and the normalized percent differences are given in Table IX.
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It is observed that the fundamental natural frequencies of the
elliptical cross sections ("ellipse_n", "ellipse b" see Fig. 1 (b),
(c)) decreased with respect to the circular cross section
("circle") in the range of 9.6%~15.4% and 11.0%~ 31.7%,
respectively. When the fundamental frequencies of the
elliptical cross-section ("ellipse b") are compared with the
respective results of the elliptical cross-section ("ellipse_n") to
investigate the effect of the orientation of the long axis of the
ellipse, the reductions by increasing the helix height are
observed. These reductions are approximately 14.7%~15.2%,
7.4%~12.2% and -3.7%~-2.3%, respectively (see Tables V-
VI).

TABLEI
THE NATURAL FREQUENCIES OF CONICAL HELIX HAVING CIRCULAR CROSS
SECTION FOR THE DIFFERENT NUMBER OF ACTIVE TURNS ( H =200mm )

o (in Hz)
1 2 3 4 5 6

this study 469 528 633 809 895 1203
2 SAP2000 47.0 528 633 808 89.6 1199
diff.% -0.21 000 000 0.12 -0.11 0.33

this study 26.6 284 345 37.0 466 492

4 SAP2000 267 284 346 37.0 466 49.3
diff.% -038  0.00 -0.29 0.00 0.00 -0.20
thisstudy 183 19.5 23.8 248 33.6 351

6  SAP2000 183 19.5 23.8 248 33.6 352
diff.% 0.00 0.00 0.00 0.00 000 -0.28

diff. % = (This study-SAP2000) x100/This study)

TABLEII
THE NATURAL FREQUENCIES OF CONICAL HELIX HAVING CIRCULAR CROSS
SECTION FOR THE DIFFERENT NUMBER OF ACTIVE TURNS ( H =400mm )

n o (in Hz)
1 2 3 4 5 6
thisstudy 394 449 558 683 1007 1158
2 SAP2000 394 449 558 68.1 1005 1154
diff.% 0.00 0.00 0.00 029 020 0.35
this study 24.5 258 293 30.0 447 495
4 SAP2000 245 258 293 30.0 4438 49.4
diff.% 0.00 0.00 0.00 0.00 -022 0.20
thisstudy 17.3 18.0 19.6 199 334 351
6 SAP2000 173 18.0 19.6 199 334 35.1
diff.% 0.00 0.00 0.00 0.00 0.00 0.00

diff. % = (This study-SAP2000) x100/This study)

TABLE IIT
THE NATURAL FREQUENCIES OF CONICAL HELIX HAVING CIRCULAR CROSS
SECTION FOR THE DIFFERENT NUMBER OF ACTIVE TURNS ( H = 600mm )

n ® (in Hz)
1 2 3 4 5 6
thisstudy 31.5 344 473 60.0 84.0 1164
2 SAP2000 31.6 344 473 599 837 1162
diff.% -0.32 000 000 0.17 036 0.17
this study  20.1 204 264 288 404 43.1
4 SAP2000 20.1 204 264 288 404 431
diff.% 0.00 0.00 0.00 0.00 0.00 0.00
thisstudy 14.1 142 183 195 30.6 309
6  SAP2000 14.1 142 183 195 306 309
diff.% 0.00 0.00 0.00 0.00 0.00 0.00

diff. % = (This study-SAP2000) x100/This study)
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TABLE IV
THE NATURAL FREQUENCIES OF CONICAL HELIX HAVING ELLIPTICAL CROSS
SECTIONS FOR THE DIFFERENT NUMBER OF ACTIVE TURNS ( H =200mm )

TABLE VIII
THE PERCENT DECREASE OF THE FUNDAMENTAL NATURAL FREQUENCIES OF
CONICAL HELIX HAVING CIRCULAR AND ELLIPTICAL CROSS SECTIONS IN
THE CASE OF H =400,600mm WITH RESPECT TO H =200mm

n o (in Hz)
1 2 3 4 5 6
ellipse n 428 61.7 713 920 1155 1241
2 ellipse b 363 453 492 634 731 1089
diff.% 15.19 26,58 31.00 31.09 36.71 1225
ellipse n  23.8 352 372 406 440 531
4 ellipse b 202 241 265 289 388 4Ll
diff.% 15.13 31.53 2876 2882 11.82 226
ellipse n 163 249 255 279 307 373
6 ellipse b 139 164 184 193 272 2938
diff.% 1472 3414 27.84 3082 1140 20.11

n H(mm) circle ellipse_n ellipse_b

5 400 16.0% 17.8% 10.2%
600 32.8% 36.2% 22.0%

4 400 7.9% 7.6% 3.0%
600 24.4% 26.1% 10.9%

6 400 5.5% 4.3% 1.4%
600 23.0% 24.5% 8.6%

TABLE IX

THE PERCENT DECREASE OF THE FUNDAMENTAL NATURAL FREQUENCIES OF

diff. % = (ellipse_n - ellipse_b)*100/ ellipse n)

TABLE V
THE NATURAL FREQUENCIES OF CONICAL HELIX HAVING ELLIPTICAL CROSS
SECTIONS FOR THE DIFFERENT NUMBER OF ACTIVE TURNS ( H =400mm )

CONICAL HELIX HAVING ELLIPTICAL CROSS SECTIONS WITH RESPECT TO
CIRCULAR CROSS SECTION

H (mm) n ellipse n ellipse_b
2 9.6% 29.2%
200 4 11.8% 31.7%
6 12.3% 31.7%
2 11.9% 20.9%
400 4 11.4% 25.0%
6 10.9% 26.3%
2 15.4% 11.3%
600 4 14.2% 11.7%
6 14.6% 11.0%

IV. CONCLUSIONS

n o (in Hz)
1 2 3 4 5 6

ellipse n 352 433 643 758 1152 1379
2 ellipse b 326 382 453 561 793 932
diff.% 7.39 11.78 29.55 2599 31.16 3241
ellipse n 220 245 274 396 408 4738
4 cllipse b 196 218 235 260 365 416
diff.% 1091 11.02 1423 3434 10.54 1297
ellipse n 156 17.0 18.0 275 298 3438
6 ellipse b 137 152 160 171 265 297
diff.% 12.18 10.59 11.11 37.82 11.07 14.66

diff. % = (ellipse_n- ellipse_b)x100/ ellipse_n)

TABLE VI
THE NATURAL FREQUENCIES OF CONICAL HELIX HAVING ELLIPTICAL CROSS
SECTIONS FOR THE DIFFERENT NUMBER OF ACTIVE TURNS ( H =600mm )

n o (in Hz)
1 2 3 4 5 6

ellipse n 27.3  31.1 478 729 865 1382
2 ellipse b 283 304 38.6 50.1 68.4 94.4
diff.% -3.66 225 19.25 31.28 2092  31.69
ellipse n  17.6 179 239 356 383 410
4 ellipse b 18.0 184 205 247 340 377
diff.% 227 =279 1423 30.62 11.23  8.05
ellipse n 123 124 164 269 274 288
6 ellipe b 127 129 140 166 254  27.0
diff.% 2325 403 1463 3829 730 6.25

diff. % = (ellipse_n - ellipse_b) x100/ ellipse_n)

TABLE VII
THE PERCENT DECREASE OF THE FUNDAMENTAL NATURAL FREQUENCIES OF
CONICAL HELIX HAVING CIRCULAR AND ELLIPTICAL CROSS SECTIONS IN THE
CASE OF N =4,6 WITH RESPECT TO n =2

The free vibration analysis of conical helicoidal rod circular
and elliptical cross sections is investigated using the mixed
finite element formulation. Curved finite element is derived
based on Timoshenko beam theory. The analytical functions
of both curvatures and arc length defining the helix geometry
are directly inserted into the mixed finite element formulation.
The results of this formulation are compared with the
commercial program SAP2000 for circular cross section.
Some parametric studies are performed to observe the effects
of the number of active turns, the height of helix and the
orientation of the elliptical cross-section on the natural
frequencies of the conical helix. The increase in the number of
active turns n and the helix vertical height decreased the
natural frequencies of the conical helix.
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