Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)

Authors: Carmen E. Zapata, Juan Bautista, Olga Montoya, Claudia Moreno, Marisol Suarez, Alejandra Betancur, Duvan Nanclares, Natalia A. Cano

Abstract:

This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases.

Keywords: Cytotoxic, genotoxic, microbiological analysis, PM10, PM2.5.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1126119

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285

References:


[1] OMS, (2005). WHO. Guías de calidad de aire de la OMS relativas al material particulado, el ozono, el Dióxido de Nitrógeno y el dióxido de azufre, actualización 2005, Resumen de evaluación de riesgos. (WHO Regional Publications, European Series)
[2] Xue, W., & Warshawsky, D. (2005). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicology and Applied Pharmacology, 206(1), 73–93.
[3] Zuluaga, M., Valencia, A. M., & Ortiz, I. C. (2009). Efecto genotóxico y mutagénicos de contaminantes atmosféricos, 28, 33–41.
[4] Tamer, A., Al-Ashaab, R., Tyrrel, S., Longhurst, P, Pollard, S.& Drew, G. (2014). Morphological classification of bioaerosols from composting using scanning electron microscopy. Waste Management. 34(7), 1101–1108
[5] Abbas, I., Saint-Georges, F., Billet, S., Verdin, A., Mulliez, P., Shirali, P., & Garçon, G. (2009). Air pollution particulate matter (PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model. Toxicology in Vitro, 23(1), 37–46
[6] Environmental Protection Agency (EPA). November 1998. Quality Assurance Guidance Document 2.12, Monitoring PM2.5 in Ambient Air Using Designated Reference or Class. I. Equivalent Methods, November, Environmental Protection Agency.
[7] Cruz, A., Jiménez, A. 2006 Evaluación de la contaminación del aire por microorganismos oportunistas y su relación con material particulado (PM2.5 y PM10) en la localidad de Puente Aranda. (Tesis Pregrado). Bogotá, Colombia: Universidad de la Salle.
[8] Jensen, M., Webster, J., & Straus, N. (1993). Method for Rapid Identification of Bacteria Based on Polymerase Chain-Reaction Amplified Ribosomal Dna Spacer Polymorphisms. Journal of Cellular Biochemistry, 59(4), 296.
[9] Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10), 5269–5273. http://doi.org/10.1073/pnas.76.10.5269
[10] Mohammadi, S., & Prasanna, B. (2003). Analysis of Genetic Diversity in Crop Plants Salient Statistical Tools and Considerations. Crop Science, 43(4), 1235–1248.
[11] Moreno, C., Romero, J., & Espejo, R. (210). Polymorphism in repeated 16S PRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology, 148(4), 1233–1239.
[12] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PS I-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389–3402. http://doi.org/10.1093/nar/25.17.3389
[13] Tamura, K., Sakazaki, R., Kosako, Y., & Yoshizaki, E. (1986). Leclercia adecarboxylata Gen. Nov., Comb. Nov., formerly known asEscherichia adecarboxylata. Current Microbiology, 13(4), 179-184.
[14] White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18, 315-322.
[15] Meléndez, I., Martínez, M. L., & Quijano, A. (2012). Actividad mutagénica y genotóxica en el material particulado fracción respirable MP2,5 en Pamplona, Norte de Santander, Colombia, 25, 347–356.
[16] Sato M., Valent G., Coirnbrao C., Coelho M., Sanchez P., Alonso C., Martins M. 1995. Mutagenicity of airborne particulate organic material from urban and industrial areas of Paulo, Brazil. Mutation Research 335: 317-330.
[17] Ahn, W. S., & Antoniewicz, M. R. (2013). Parallel labeling experiments with (1,2-13C) glucose and (U-13C) glutamine provide new insights into CHO cell metabolism. Metabolic Engineering, 15, 34–47.
[18] Cai, X., Xing, X., Cai, J., Chen, Q., Wu, S., & Huang, F. (2010). Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. Micron (Oxford, England: 1993), 41(3), 257–262.
[19] Ulukaya, E., Ozdikicioglu, F., Oral, A. Y., & Demirci, M. (2008). The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 22(1), 232–239.
[20] Repetto G., del Peso A., Zurita J. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nature Protocols 3, 1125 - 1131
[21] Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191.
[22] Gangamma, S. (2014). Characteristics of airborne bacteria in Mumbai urban environment. Science of the Total Environment, 488, 70-74.
[23] Sousa, S.I.V., Martins, F.G., Pereira, M.C., Alvim-Ferraz M.C.M., Ribeiro, H., Olveira M., & Abreu, I. (2008). Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmospheric Environment 42, 7452–7464.