Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina

Abstract:

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.

Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125979

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514

References:


[1] L. Anchordoqui, T. Paul, S. Reucroft, and J. Swain, “The Neutron Flux Variation in the Earth’s Atmosphere Depending on the Solar Proton Flux”, Int. J. Modern Physics A 18, 2229-2366 (2003).
[2] F. A. Cucinotta, M.-. Y. Kim, L. J. Chappell, J. L. Huff, “How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars”, PLos ONE 8, e74988 (2013).
[3] T. Kanai, Y. Furusawa, K. Fukutsu, H. Itsukaichi, K. Eguchi-Kasai, and H. Ohara, “Irradiation of Mixed Beam and Design of Spread-Out Bragg Peak for Heavy-Ion Radiotherapy”, Radiation Research 147, 78-85 (1997).
[4] M. Krämer, O. Jäkel, T. Haberer, G. Kraft, D. Schardt, and U. Weber, “Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization”, Phys. Med. Biol. 45, 3299-3317 (2000).
[5] I. Turesson, K.-A. Johansson, and S. Mattsson, “The Potential of Proton and Light Ion Beams in Radiotherapy”, Acta Oncologica 42, 107-114 (2003).
[6] A. Brahme, “Recent Advances in Light Ion Radiation Therapy”, International Journal of Radiation Oncology • Biology • Physics 58, 603-616 (2004).
[7] D. Schulz-Ertner and H. Tsujii, “Particle Radiation Therapy using Proton and Heavier Ion Beams”, J. Clinical Oncology 25, 953-964 (2007).
[8] T. Elsässer, W. K. Weyrather, T. Friedrich, M. Durante, G. Iancu, M. Krämer, G. Kragl, S. Brons, M. Winter, K.-J. Weber, M. Scholz, “Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning”, Int. J. Radiation Oncology, Biology, Physics 78, 1177-1183 (2010).
[9] R. Baskar, K. A. Lee, R. Yeo, and K-W. Yeoh, “Cancer and Radiation Therapy: Current Advances and Future Directions”, Int. J. Med. Sci. 9, 193-199 (2012).
[10] E. Surdutovich and A. V. Solov'yov, “Multiscale approach to the physics of radiation damage with ions”, Eur. Phys. J. D 68, 353 (30 pp) (2014).
[11] B. Boudaïffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, “Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons”, Science 287, 1658-1660 (2000).
[12] X. Pan, P. Cloutier, D. Hunting, and L. Sanche, “Dissociative Electron Attachment to DNA”, Phys. Rev. Lett. 90, 20812 (4 pp) (2003).
[13] M. Dapor, M. Ciappa, and W. Fichtner, “Monte Carlo Modeling in the Low-Energy Domain of the Secondary Electron Emission of Polymethylmethacrylate for Critical Dimension Scanning Electron Microscopy”, J. Micro/Nano MEMS, MOEMS 9, 023001 (9 pp) (2010).
[14] International Commission on Radiation Units and Measurements. Measurement of Dose Equivalents from external photon and electron Radiations. ICRU Report 47. Bethesda, Maryland (1992).
[15] R. Garcia-Molina, I. Abril, S. Heredia-Avalos, I. Kyriakou, and D. Emfietzoglou, “A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water”, Phys. Med. Biol. 56, 6475-6493 (2011).
[16] R. Garcia-Molina, I. Abril, P. de Vera, I. Kyriakou, and D. Emfietzoglou, “Proton beam irradiation of liquid water: A combined molecular dynamics and Monte Carlo simulation study of the Bragg peak profile”, ch. 8 (pp. 271-304) in Fast Ion-Atom and Ion-Molecule Collisions, ed. by, Dž. Belkic (World Scientific Publishing Company, Singapore, 2012).
[17] P. de Vera, I. Abril, and R. Garcia-Molina, to be published (2016).
[18] International Commission on Radiation Units and Measurements. Nuclear Data for Neutron and Proton Radiotherapy and for Radiation Protection, ICRU Report 63. Bethesda, Maryland (2000).
[19] I. Abril, R. Garcia-Molina, C. D. Denton, F. J. Pérez-Pérez, and N. R. Arista, “Dielectric description of wakes and stopping powers in solids”, Phys. Rev. A 58, 357-366 (1998).
[20] S. Heredia-Avalos, R. Garcia-Molina, J. M. Fernández-Varea, and I. Abril, “Calculated energy loss of swift He, Li, B, and N ions in SiO2, Al2O3, and ZrO2”, Phys. Rev. A 72, 052902 (9 pp) (2005).
[21] R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, Biological and Medical Physics, Biomedical Engineering, edited by G. G. Gómez-Tejedor, M. C. Fuss (Springer, Dordrecht, 2012), ch. 15.
[22] P. de Vera, R. Garcia-Molina, I. Abril I, and A. V. Solov’yov, “Semiempirical Model for the Ion Impact Ionization of Complex Biological Media”, Phys. Rev. Lett. 110, 148104 (5 pp) (2013).
[23] N. F. Mott, “The Scattering of Fast Electrons by Atomic Nuclei”, Proc. R. Soc. London Ser. 124, 425-442 (1929).
[24] S.-R. Lin, N. Sherman, and J. K. Percus, “Elastic scattering of relativistic electrons by screened atomic nuclei”, Nucl. Phys. 45, 492-504 (1963).
[25] P. J. Bunyan and J. L. Shonfelder, “Polarization by Mercury of 100 to 2000 eV Electrons”, Proc. Phys. Soc. 85, 455-462 (1965).
[26] F. Salvat and R. Mayol, “Elastic scattering of electrons and positrons by atoms. Schrödinger and Dirac partial wave analysis” Comput. Phys. Commun. 74 , 358-374 (1993).
[27] M. Dapor, “Elastic Scattering Calculations for Electrons and Positrons in Solid Targets”, J. Appl. Phys. 79, 8406-8411 (1996).
[28] M. Dapor, Electron-Beam Interactions with Solids: Applications of the Monte Carlo Method to Electron Scattering Problems, Vol. 186 of Springer Tracts in Modern Physics, Springer, Berlin, 2003.
[29] A. Jablonski, F. Salvat and C. J. Powell, “Comparison of Electron Elastic-Scattering Cross Sections Calculated from Two Commonly Used Atomic Potentials”, J. Phys. Chem. Ref. Data 33, 409-451 (2004).
[30] N. D. Mermin, “Lindhard Dielectric Function in the Relaxation-Time Approximation”, Phys. Rev. B 1, 2362-2363 (1970).
[31] H. Frӧhlich, “Electrons in Lattice Fields”, Adv. Phys. 3, 325-361 (1954).
[32] J. Llacer and E. L. Garwin, “Electron‐Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies between 0.25 and 7.5 eV”, J. Appl. Phys. 40, 2766-2775 (1969).
[33] J. P. Ganachaud and A. Mokrani, “Theoretical Study of the Secondary Electron Emission of Insulating Targets”, Surf. Sci. 334, 329-341 (1995).
[34] R. Shimizu and Ze-Jun Ding, “Monte Carlo Modelling of Electron-Solid Interactions”, Rep. Prog. Phys. 55, 487-531 (1992).
[35] J. Ch. Kuhr and H. J. Fitting, “Monte Carlo Simulation of Electron Emission from Solids”, J. Electron Spectrosc. Relat. Phenom. 105, 257-273 (1999).
[36] M. Dapor, Transport of Energetic Electrons in Solids: Computer Simulation with Applications to Materials Analysis and Characterization, Vol. 257 of Springer Tracts in Modern Physics, Springer, Berlin, 2014.
[37] D. C. Joy, M. S. Prasad, H. M. Meyer III, “Experimental Secondary Electron Spectra under SEM Conditions”, Journal of Microscopy 215, 77-85 (2004).
[38] M. Dapor, Appl. Surf. Sci. to be published (2016).
[39] M. Dapor, G.I.T. Imaging & Microscopy, to be published (2016).
[40] P. de Vera, I. Abril, R. Garcia-Molina, “Inelastic Scattering of Electron and Light Ion Beams in Organic Polymers”, J. Appl. Phys. 109, 094901 (8 pp) (2011).
[41] M. Dapor, I. Abril, P. de Vera, and R. Garcia-Molina, “Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: Influence of the target electronic excitation description”, Eur. Phys. J. D 69, 165 (10 pp) (2015).