
 

 

 
Abstract—Human action is recognized directly from the video 

sequences. The objective of this work is to recognize various human 
actions like run, jump, walk etc. Human action recognition requires 
some prior knowledge about actions namely, the motion estimation, 
foreground and background estimation. Region of interest (ROI) is 
extracted to identify the human in the frame. Then, optical flow 
technique is used to extract the motion vectors. Using the extracted 
features similarity measure based classification is done to recognize 
the action. From experimentations upon the Weizmann database, it is 
found that the proposed method offers a high accuracy. 

 
Keywords—Background subtraction, human silhouette, optical 

flow, classification.  

I. INTRODUCTION 

 HE analysis of human body movements can be applied in 
a variety of application domains, such as video 

surveillance, video retrieval, human computer interaction 
systems and medical diagnoses. In some cases, the result of 
human action analysis can be used to identify people acting 
suspiciously and other unusual activities directly from videos.  

Monitoring activities of daily living is gaining interest  
because of the growing  population  of  elderly  people  and  
their  need  for  care. A system that contributes to the safety of 
elderly at home is therefore more than needed. The analyzing 
of human behavior and looking for the changes in the 
activities of the daily living is essential for the medical 
professionals to detect emerging physical and mental health 
problems, before they become critical particularly for elderly. 
The human action recognition is necessary in shop 
surveillance, city surveillance, airport surveillance and in other 
places where security is the prime factor. 

The presented method can be applied for sports video 
analysis like race walking. Race walking is an Olympic 
athletic event and it is different from running. Using this 
method the system can recognize whether the race walker is 
walking or running. 

The remainder of this paper is the discussion of the 
presented scheme. Section II discusses the related literature. 
Section III explains the presented method. Section IV 
discusses the experimental results. Finally, Section V 
concludes the paper. 
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II.  LITERATURE REVIEW 

Bobick et al. [1] presented temporal templates through 
projecting frames onto a single image, namely motion history 
image (MHI) and motion energy image (MEI). MHI indicates 
how motion happens and MEI records where it is. This 
representation gives satisfactory performance under the 
circumstance where the background is relatively static. 

Oikonomopoulos et al. [2] focused on the problem of 
human action recognition using spatiotemporal events that are 
localized at points that are salient both in space and time. The 
spatiotemporal points are detected by measuring the variations 
in the information content of pixel neighborhoods not only in 
space but also in time. The classification scheme uses 
Relevance Vector Machines and on the chamfer distance 
measure. The classification results are presented for two 
different types of classifiers, displaying the efficiency for the 
representation in discriminating actions of different motion 
classes. 

Oikonomopoulos et al. [3] developed a new set of visual 
descriptors that provide a local space-time description of the 
visual activity. The descriptors are extracted at spatiotemporal 
salient points detected on the estimated optical flow field for a 
given image sequence. 

Danielweinland et al. [4] presented an overview and 
categorization of the approaches used. Feature extraction, 
action learning, action segmentation, action classification are 
the stages involved in action recognition. Feature extraction is 
used to extract the postures and the motion cues from the 
video. Action learning is the process of learning statistical 
models from the extracted features. The statistical models are 
used to classify new feature observations. Action 
segmentation is used to cut the streams of motions into a 
single action instances that are consistent to set of initial 
training sequences used to learn the models. 

Droogenbroeck et al. [5] proposed a technique for motion 
detection that incorporates several innovative mechanisms. 
This technique stores, a set of values for each pixel taken in 
the past at the same location or in the neighborhood. It then 
compares this set to the current pixel value in order to 
determine whether that pixel belongs to the background, and 
adapts the model by choosing randomly which values to 
substitute from the background model. 

Laptev et al. [7] combined the histograms of optical flow 
(HOF) and histograms of oriented gradients (HOG) as a 
descriptor, which is demonstrated to be better than either of 
HOG or HOF as a single descriptor. 

Aggarwal et al. [8] gave an overview of various methods 
used prior to 1995, in articulated and elastic non rigid motion. 
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