Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer

Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod

Abstract:

To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.  

Keywords: Inertial confinement fusion, Mach-Zehnder interferometer, Digital holographic microscopy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125319

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269

References:


[1] B.Kursunoglu, A. Perlmutter, S. M. Widmayer, “Progress in lasers and laser fusion” sprringer (1975).
[2] John F. Holzrichter, Ph.D, “Lasers and inertial fusion experiments at livermore” Lawrence Livermore Laboratory Report (2006).
[3] L. A. Scott, R. G. Schneggenburger, and P. R. Anderson, J. Vac. Sci. Technol. A4, 1155 (1986).
[4] T. P. Bernat, D. H. Darling, and J. J. Sanchez, “Applications of holographic interferometry to cryogenic ICF target characterization”¬ Lawrence Livermore Laboratory Report (1982).
[5] L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
[6] L. Yu and M.K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
[7] Goodman JW, Lawrence RW. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 1967; 11: 77-79.
[8] Huang T. Digital holography. Proc. IEEE. 1971; 59: 1335-1346.
[9] Schnars U, Jüpter WPO. Digital Holography. Springer-Verlag, Heidelberg; (2005).
[10] Yaroslavsky LP. Digital Holography and Digital Image Processing: Principles, Methods, Algorithms. Kluwer Academic Publishers, Massachusetts; (2003).
[11] Zhang T, Yamaguchi I. Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett.(1998); 23: 1221-1223
[12] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl. Opt. (1999); 38: 6994-7001.
[13] Dubois F, Joannes L, Legros JC. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl. Opt. (1999); 38: 7085-7094.
[14] Colomb T, Dürr F, Cuche E, Marquet P, Limberger HG, Salathé RP, Depeursinge C. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements. Appl. Opt.2005; 44: 4461-4469.
[15] Colomb T, Kühn J, Charrière F, Depeursinge C, Marquet P, Aspert N. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Opt. Express 2006; 14: 4300-4306.
[16] Ferraro P, Grilli S, Alfieri D, De Nicola S, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V. Extended focused image in microscopy by digital holography. Opt. Express2005; 13: 6738-6749.
[17] Ferraro P, Coppola G, De Nicola S, Finizio A, Pierattini G. Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time. Opt. Lett.2003; 28: 1257-1259.
[18] Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett.2005; 30: 468-470.
[19] Dubois F, Minetti C, Monnom O, Yourassowsky C, Legros JC, Kischel P. Pattern recognition with a digital holographic microscope working in partially coherent illumination. Appl. Opt.2002; 41: 4108-4119.
[20] Charrière F, Kühn J, Colomb T, Montfort F, Cuche E, Emery Y, Weible K, Marquet P, Depeursinge C. Characterization of microlenses by digital holographic microscopy. Appl. Opt.2006; 45: 829-835.
[21] Coppola G, Ferraro P, Iodice M, De Nicola S, Finizio A, Grilli S. A digital holographic microscope for complete characterization of microelectromechanical systems. Meas. Sci. Technol.2004; 15: 529-539.
[22] Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti P. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express2005; 13: 9361-9373.
[23] Kemper B, von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt.2008; 47: A52-A61.
[24] Shi H, Fu Y, Quan C, Tay CJ, He X. Vibration measurement of a micro-structure by digital holographic microscopy. Meas. Sci. Technol.2009; 20: 065301.
[25] Wahba HH, Kreis T. Characterization of graded index optical fibers by digital holographic interferometry. Appl. Opt.2009; 48: 1573-1582.
[26] Iwai H, Fang-Yen C, Popescu G, Wax A, Badizadegan K, Dasari RR, Feld MS. Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry. Opt. Lett.2004; 29: 2399-2401.
[27] Reichelt S, Zappe H. Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing. Appl. Opt.2005; 44: 5786-5792.
[28] Mico V, Zalevsky Z, Garcia J. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution. Opt. Commun.2008; 281: 4273-4281.
[29] Micó V, Ferreira C, Zalevsky Z and García J. Superresolution digital holographic microscopy for three-dimensional samples. (2008).
[30] Micó V, Ferreira C, Zalevsky Z and García J. Basic principles and applications of digital holographic microscopy. (2010).
[31] Uichi K, Hitoshi N, and Hyo-gun K. Fabrication of cross-linked polymer shells for inertial confinement fusion experiments.¬ (1997).
[32] Schnars U. Direct phase determination in hologram interferometry with use of digitally recorded holograms. (1994).