Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: Mechanical measurement, nanomaterials, optical coating, thermal noise.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1124375

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763

References:


[1] Marshall W et al 2003 Phys Rev Lett 91 13040
[2] Numata K, Kemery A, and Jordan Camp 2004 Phys. Rev. Lett. 93 250602
[3] Heidmann A et al. 1997 Appl Phys B 64 173-180
[4] F. Acernese et al., “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Class. Quantum Grav. 32, 024001, 2015.
[5] J. Aasi et al., “Advanced LIGO,” Class. Quantum Grav. 32, 074001, 2015.
[6] B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102, 2016.
[7] H. B Callen and T. A. Welton, “Irreversibility and Generalized Noise,” Phys. Rev. 83, 34, 1951.
[8] S. D. Penn et al., “Mechanical loss in tantala/silica dielectric mirror coatings,” Class. Quantum Grav. 20, 2917, 2003
[9] G.M. Harry et al., “Titania-doped Tantala/Silica coatings for gravitational-wave detection,” Class. Quantum Grav. 24, 40, 2006.
[10] A.E. Villar et al., “Measurement of thermal noise in multilayer coatings with optimized layer thickness,” Phys. Rev. D 81, 122001, 2010.
[11] M. Punturo et al., “The third generation of gravitational wave observatories and their science reach,” Class. Quantum Grav. 27, 084007, 2010.
[12] The LIGO Scientific Collaboration, “Instrument Science White Paper,” LIGO-T1400316–v4, 2015.
[13] I. W. Martin et al., “Measurement of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2,” Class. Quantum Grav. 25, 055005, 2008.
[14] G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in optical interferometry,” Nature Photonics, 7, 8, 2013.
[15] A. Cumming et al., “Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors,” Class. Quantum Grav., 32, 035002, 2015.
[16] S. Gossler, J. Cumpston, K. McKenzie, C.M. Mow-Lowry, M.B. Gray, and D.E. McClelland, “Coating-free mirrors for high precision interferometric experiments,” Phys. Rev. A 76, 053810, 2007.
[17] S. Kroker et al., "Coupled grating reflectors with highly angular tolerant reflectance," Opt. Letters, 38, 3336 – 3339, 2013.
[18] I.M. Pinto, M. Principe and R. De Salvo, “Subwavelength layered Titania-Silica for advanced interferometer coatings,” LIGO-G1100586, 2011.
[19] S. Chao, H.-W. Pan, L.-C. Kuo, I.M. Pinto, R. De Salvo, M. Principe, "Mechanical loss reduction for nm-layered composites by thermal annealing," LIGO-G1501024, 2015.
[20] S. Rowan, G. Cagnoli, P. Sneddon, J. Hough, R. Route, E. K. Gustafson, M. M. Fejer, and V. Mitrofanov, “Investigation of mechanical loss factors of some candidate materials for the test masses of gravitational wave detectors,” Phys. Lett. A 265, 5, 2000.
[21] Harry G M et al. “Harry G M et al 2002 Class. and Quantum Grav. 19 897,” Class. Quantum Grav. 19, 897, 2002.
[22] K. Numata, G. Bertolotto Bianc, N. Ohishi, A. Sekiya, S. Otsuka, K. Kawabe, M. Ando, and K. Tsubono, Phys. Lett. A, 276, 37, 2000.
[23] E. Cesarini et al., “A “gentle” nodal suspension for measurements of the acoustic attenuation in materials,” Rev. Sci. Instrum. 80, 053904, 2009.
[24] C. Zener, “Internal friction in solids, II. General theory of thermoelastic internal friction,” Phys. Rev., 53, 90-99, 1938.
[25] I. W. Martin et al., “Comparison of the temperature dependence of the mechanical dissipation in thin films of Ta2O5 and Ta2O5 doped with TiO2”, Class. Quantum Grav., 26, 155012, 2009.
[26] S. Chao, H.-W. Pan, L.-C. Kuo, I.M. Pinto, R. De Salvo, M. Principe, "Mechanical loss angles of annealed nm-layered SiO2/TiO2 composites: preliminary results" LIGO-G1401055-v2, 2015.