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Numerical Inverse Laplace Transform Using
Chebyshev Polynomial
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Abstract—In this paper, numerical approximate Laplace
transform inversion algorithm based on Chebyshev polynomial of
second kind is developed using odd cosine series. The technique has
been tested for three different functions to work efficiently. The
illustrations show that the new developed numerical inverse Laplace
transform is very much close to the classical analytic inverse Laplace
transform.
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I. INTRODUCTION

A.The Laplace Transform
HE theoretical foundation to a class of integral transforms
is due to French mathematician Pierre Simon de Laplace
(1829-1949) who made use of integral in his work on
probability theory [11, p. 112], [13, p. 162]. Laplace transform
is the most popular integral transform in which a function
f(t) of one variable t transforms into function F(S) of

another domain s (s may be complex). Mathematically, the
Laplace transform of a function f (t), denoted by L[f(t)] is

defined as

F(s)=L[(f®)]= Te*ﬁ‘ f(t)dt, 1

provided integral exists. e *is called the kernel of the
transformation [11, p.114].
Definition 1. A function f (t)

(sectional) continuous on the interval [a,b] if it is bounded

is said to be piecewise

and has at most finitely many discontinuities in that interval.
Definition 2. Let f(t)be piecewise continuous function

defined for all positive T in the range (0,oo)with the property

that there exists a real number y such that

0,7>7

i A
tlgrj f (t)‘e - {i 0,7 < ¥q
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Then, f(t)is said to be of exponential order y, as t — oo

For y =y, the above limit may or may not be satisfied [13,
p-166].

Theorem 1 (Existence Theorem). A necessary condition for
convergence of integral defined by (1) is thatRe(s) > y,,

where constant 7, is exponential order of f (t).

The technique of Laplace transformation plays a significant
role in mathematical applications in basic & social sciences
and engineering. It is one of the most powerful techniques for
solving differential and integral equations. Laplace transform
is an ideal tool for solving initial value problems and plays a
key role in modern approach to analysis and design of
engineering systems such as electrical circuits and mechanical
vibrations [6], [7].

The popularization of Laplace transform was due to the
work of English electrical engineer Oliver Heaviside (1850-
1925) when he applied a similar approach without proof and
lack of mathematical rigor to ordinary differential equation
with constant coefficients [11, p. 112]. His approach was
widely accepted and spread in the fields of improper integral,
asymptotic series and transform theory. It, indeed, took many
years to recognize that Laplace provided a theoretical
formulation of Heaviside work almost a century before. It was
recognized that Laplace transform provided a more systematic
alternative approach to ordinary differential equations than by
Heaviside.

B. Inverse Laplace Transform
If L[f (t)] =F(s), then the inverse Laplace transform of
function f(t) which maps the Laplace transform of a function

back to the original function is defined as

L (F(s)=f®. @
Analytic inversion of Laplace transform is in fact related to

the theory of complex variables. The classical and simplest

inversion formula is generally called Bromwich integral or

Bromwich Mellin Contour integral or sometimes Heaviside

inversion formula [1], [6].

Theorem 2 (The Bromwich Inversion Theorem) [1]. Let

f(t) possess a continuous derivative and |f (t)| < ke”*, where
k and y are the positive constants. Define (1). Then inversion

of F(s) is given by the integral
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CHioo

f(t):i [ Foesas,

c—io

Re(s) =c is so chosen that the poles (singularities) lie to
the left on the line Re(s)=c. Usually F(S)is an analytic

function on the half plane Re(S)>y,. F(s)has some
singularity on the line Re(S) = y.

Theorem 3 (Lerch's Theorem) [1]. If (1) is satisfied by a
continuous function f(t)for Re(s)>y,. then there is no

other continuous function which satisfies the given Laplace
transform. That is, inverse transform is unique.

C.Numerical Inverse Laplace Transform

Sometimes it is very arduous or even impossible to invert
into original time-domain function from its frequency-domain
characterization due to difficulty in finding the poles and
residues of F(S) . Sometimes time-domain function may not

be defined analytically, but rather through graphics,
experimental measurements, sections or in discrete form.
Examples may be of systems with nonlinear frequency
dependence. To overcome these situations numerical
techniques for finding the inverse Laplace transform was
introduced in the sixties by Bellman, Kalaba and Lockett in
1966 instead of analytical expression [10]. Numerical inverse
technique has gained the importance due to its various
applications. The numerical inverse Laplace transform has
been successfully applied in analyzing -electromagnetic
transients such as uniform, non-uniform and excited
transmission lines, transformer and machine windings,
underground water power transmission and submarine cables,
groundwater solute report and flow problems [8].

A large number of methods for numerically inverting the
Laplace transform are available in [1], [3], [4], [6]:
e  Methods based on Gaussian quadrature.
e  Methods which expand f (t) in exponential function.

e Methods based on Fourier series.
e  Methods based on rational approximation.

Legendre function, Gauss Legendre quadrature rule, Pade
approximant, Laguerre series and Fourier series method are
certain methods feasible in literature [1], [2], [4], [5] for
numerically inverting the Laplace transform. In [12], Sheng et
al. have successfully tested Invlap, Gavsteh and numerical
inverse Laplace transform (NILT) algorithms for finding
inverse Laplace transforms for fractional order differential
equations.

II. NUMERICAL INVERSION BASED ON CHEBYSHEV
POLYNOMIAL

Here we follow parallel technique of Papoulis [5] as
introduced in [9], whereby making the substitution

sinf=e°" 5> 0.

©)
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>

The interval (0, oo) transformed into (0 g) and f(t)

becomes
f [7 ilog(sin 9)} =g(0). 4)
o
Now (1) takes the form
T
o F(s)= f (sin0)5 " cos g (6)de. (%)
0
By settings =2k +1)o, k=0, 1, 2..., we have
3
o F((2k+ 1)a)=J'(sin 0)* cos0g(60)do. (6)
0

Here we assume thatg(z)=f()=0. In case this is not

satisfied then arrange it by subtracting a suitable function from
g(0) . The function g(¢) can be expanded in (O§) as the odd

cosine series

9(0) = Zw:ak cos(2k + 1) @)

k=0

Thus with k =0,1,2... we

and is valid in the interval (_%,%)

get

io‘ F(o)=ay.
T

(®)
22(-1y iaF@a) =a, —a,.
T

1)k 2%* o F (2K + Do) =
T

ek

Thus, a; can be obtained from (8) by the forward substitution
and hence g(0) can be obtained from (7).

_ cosk@
 cosd
Chebyshev polynomial of second kind of degree k is. Thereby
using cosg = (1 _e,m)l/z’ we express

where the

Definey, , (x) Uy (%)

, X=s8inf>

(=67 aune ) ©
k=0

III. NUMERICAL IMPLEMENTATION

We consider here three different functions to exhibit the
accuracy of the method.
Example 1. Consider the function
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1

SvVs+a

F(s)=

having the exact solution ¢ ;) - erf [14].
a

By employing the method, firstly we check the condition
f (0) = 0 by the initial value theorem. In this case

£(0) = lim SF(s) = lim s—1— =0
S—00 So®  g./S+ 3
As it is satisfying the assumption so the technique is
applicable here. Thus, the solution f (t) can be obtained.

Table I represents the coefficients obtained from relation
(8). In Table II, we have compared the numerical approximate
solution with exact solution of inverse Laplace transform.

TABLE I
CALCULATION OF COEFFICIENTS IN THE EXPANSION OF f (t)

~

ay

0.902592444
0.05325596

0.018235124
0.00884848

0.005063258
0.003252933
0.002302184
0.001841575
0.001760011
0.001911068
0.001982293

O 0 9 N R W N = O

(=]

TABLE II
COMPARISONS OF EXACT SOLUTION AND PRESENT APPROXIMATE SOLUTION

t Exact solution  Present approximate solution  Absolute error

0 0 2.20076E-17 2.20076E-17
0.1 0345279154 0.345704621 4.25468E-04
0.2 0.472910743 0.472470767 4.39976E-04
0.3 0.561421967 0.562037648 6.15681E-04
0.4 0.628906628 0.627904922 1.00171E-03
0.5  0.682689187 0.683347691 6.58504E-04
0.6 0.726678106 0.728711115 2.03301E-03
0.7 0.763276268 0.763550699 2.74431E-04
0.8 0.794096679 0.792753088 1.34359E-03
0.9  0.820287413 0.820028582 2.58831E-04

1 0.842700735 0.845385366 2.68463E-03

Example 2. Consider the function F(s):e’a‘/g with the

exact inverse Laplace transform as f(ty=—2 e% [14]. Firstly,
2at?
we will check the condition, using L’Hopital’s rule

als _lim—>__0
S—mcea«/g

lim SF(s) = lim se~
S—0 S—w0

Hence, the given function is satisfying the assumption. Thus
the Numerical Laplace transform of given function is found.
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Table III represents the coefficients obtained from relation
(9) and in Table IV we have compared the numerical
approximate solution with exact inverse by settinga=2.

09

0.8 R

07- R

06+ ]

051 R
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03- R

02 R

0.1 — Exact solution
—+— Present Approximate solution
T

0 I I I I I T T T
01 02 03 04 05 06 07 08 09 1

t

Fig. 1 Comparison of Exact and Approximate Inverse Laplace
Transform in Example 1

TABLE III
CALCULATION OF COEFFICIENTS IN THE EXPANSION
0 0.172327795
1 0.0129098
2 -0.07321951
3 -0.030870628
4 0.00512977
5 -0.004579998
6 -0.00855954
7 -0.002343518
8 -0.002370305
9 -0.003177849
10 -0.001894941
11 -0.001744373
12 -0.001754549
13 -0.001376952
14 -0.001293252
15 -0.001196989
16 -0.001024496
17 -0.000855646
18 -0.000417877
TABLE IV
COMPARISONS OF PRESENT APPROXIMATE INVERSE WITH EXACT LAPLACE
INVERSE
t Exact solution Numerical inverse Absolute error
0.1 0.00080999 0.000931632 1.21641E-04
0.2 0.04250183 0.042668359 1.66526E-04
0.3 0.12248839 0.122658138 1.69753E-04
0.4 0.18306228 0.182715254 3.47028E-04
0.5 0.21596387 0.216392144 4.28278E-04
0.6 0.22928416 0.228920001 3.64159E-04
0.7 0.23086458 0.230780557 8.40270E-05
0.8 0.22590299 0.226653927 7.50936E-04
0.9 0.21752635 0.217120049 4.06302E-04
1 0.20755375 0.206624265 9.29484E-04
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Fig. 2 Comparison of Exact and Approximate Inverse Laplace
Transform in Example 2
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Fig. 3 Comparison of Exact and Approximate Inverse Laplace
Transform in Example 3

Example 3. Consider the function

—aVs
Vs

F(s)="2

with the exact inverse Laplace transform given by

_32

f(t):% [14].

To satisfy the condition of the aforementioned technique, by
using initial value theorem and using L’Hopital rule we attain

s
= lim

—avs _
S—0 ea\/g

0

lim SF(s) = lim se
S—0

S—®©
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The given function is satisfying the restriction. Therefore,
the Numerical Laplace transform of above function is obtained
and is presented through Fig. 3 by considering a=2.

IV. CONCLUSION

The numerical approximate solutions in examples exhibit
the applicability of technique to find the inverse Laplace
transform of functions. Solution expressed in terms of odd
cosine series is based on Chebyshev polynomial. The result
shows that the method is efficient and easy to implement.
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