WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10003455,
	  title     = {Impact of Mixing Parameters on Homogenization of Borax Solution and Nucleation Rate in Dual Radial Impeller Crystallizer},
	  author    = {A. Kaćunić and  M. Ćosić and  N. Kuzmanić},
	  country	= {},
	  institution	= {},
	  abstract     = {Interaction between mixing and crystallization is often
ignored despite the fact that it affects almost every aspect of the
operation including nucleation, growth, and maintenance of the
crystal slurry. This is especially pronounced in multiple impeller
systems where flow complexity is increased. By choosing proper
mixing parameters, what closely depends on the knowledge of the
hydrodynamics in a mixing vessel, the process of batch cooling
crystallization may considerably be improved. The values that render
useful information when making this choice are mixing time and
power consumption. The predominant motivation for this work was
to investigate the extent to which radial dual impeller configuration
influences mixing time, power consumption and consequently the
values of metastable zone width and nucleation rate. In this research,
crystallization of borax was conducted in a 15 dm3 baffled batch
cooling crystallizer with an aspect ratio (H/T) of 1.3. Mixing was
performed using two straight blade turbines (4-SBT) mounted on the
same shaft that generated radial fluid flow. Experiments were
conducted at different values of N/NJS ratio (impeller speed/
minimum impeller speed for complete suspension), D/T ratio
(impeller diameter/crystallizer diameter), c/D ratio (lower impeller
off-bottom clearance/impeller diameter), and s/D ratio (spacing
between impellers/impeller diameter). Mother liquor was saturated at
30°C and was cooled at the rate of 6°C/h. Its concentration was
monitored in line by Na-ion selective electrode. From the values of
supersaturation that was monitored continuously over process time, it
was possible to determine the metastable zone width and
subsequently the nucleation rate using the Mersmann’s nucleation
criterion. For all applied dual impeller configurations, the mixing
time was determined by potentiometric method using a pulse
technique, while the power consumption was determined using a
torque meter produced by Himmelstein & Co. Results obtained in
this investigation show that dual impeller configuration significantly
influences the values of mixing time, power consumption as well as
the metastable zone width and nucleation rate. A special attention
should be addressed to the impeller spacing considering the flow
interaction that could be more or less pronounced depending on the
spacing value.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {10},
	  number    = {1},
	  year      = {2016},
	  pages     = {75 - 80},
	  ee        = {https://publications.waset.org/pdf/10003455},
	  url   	= {https://publications.waset.org/vol/109},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 109, 2016},
	}