WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10003403,
	  title     = {Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths},
	  author    = {Bimali Sanjeevani Weerakoon and  Toshiaki Osuga and  Takehisa Konishi},
	  country	= {},
	  institution	= {},
	  abstract     = {Magnetic Resonance Imaging Contrast Agents
(MRI-CM) are significant in the clinical and biological imaging as
they have the ability to alter the normal tissue contrast, thereby
affecting the signal intensity to enhance the visibility and detectability
of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles,
coated with dextran or carboxydextran are currently available for
clinical MR imaging of the liver. Most SPIO contrast agents are
T2 shortening agents and Resovist (Ferucarbotran) is one of a
clinically tested, organ-specific, SPIO agent which has a low
molecular carboxydextran coating. The enhancement effect of
Resovist depends on its relaxivity which in turn depends on factors
like magnetic field strength, concentrations, nanoparticle properties,
pH and temperature. Therefore, this study was conducted to
investigate the impact of field strength and different contrast
concentrations on enhancement effects of Resovist. The study
explored the MRI signal intensity of Resovist in the physiological
range of plasma from T2-weighted spin echo sequence at three
magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4,
r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast
concentrations by a mathematical simulation. Relaxivities of r1 and r2
(L mmol-1 Sec-1) were obtained from a previous study and the selected
concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were
simulated using TR/TE ratio as 2000 ms /100 ms. According to the
reference literature, with increasing magnetic field strengths, the
r1 relaxivity tends to decrease while the r2 did not show any
systematic relationship with the selected field strengths. In parallel,
this study results revealed that the signal intensity of Resovist at lower
concentrations tends to increase than the higher concentrations. The
highest reported signal intensity was observed in the low field strength
of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T
were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L,
respectively. Furthermore, it was revealed that, the concentrations
higher than the above, the signal intensity was decreased
exponentially. An inverse relationship can be found between the field
strength and T2 relaxation time, whereas, the field strength was
increased, T2 relaxation time was decreased accordingly. However,
resulted T2 relaxation time was not significantly different between
0.47 T and 1.5 T in this study. Moreover, a linear correlation of
transverse relaxation rates (1/T2, s–1) with the concentrations of
Resovist can be observed. According to these results, it can conclude
that the concentration of SPIO nanoparticle contrast agents and the
field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR
imaging those two parameters should be considered prudently.},
	    journal   = {International Journal of Materials and Metallurgical Engineering},
	  volume    = {10},
	  number    = {1},
	  year      = {2016},
	  pages     = {50 - 53},
	  ee        = {https://publications.waset.org/pdf/10003403},
	  url   	= {https://publications.waset.org/vol/109},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 109, 2016},
	}