Biosensor Design through Molecular Dynamics Simulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Biosensor Design through Molecular Dynamics Simulation

Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang

Abstract:

The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structureprocess- property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.

Keywords: Biosensor, design, DNA, molecular dynamics simulation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1110902

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969

References:


[1] Hannig, G., Makrides, S. C., "Strategies for optimizing heterologous protein expression in Escherichia coli", Trends Biotechnol. vol. 16, no. 2, pp. 54-60, 1998.
[2] Sorensen, H. P., Mortensen, K. K., "Advanced genetic strategies for recombinant protein expression in Escherichia coli", J Biotechnol. vol. 115, no. 2, pp. 113-128, 2005.
[3] Langer, R., Tirrell, D. A., "Designing materials for biology and medicine", Nature. vol. 428, no. 6982, pp. 487-492, 2004.
[4] Burg, K. J. L., Porter, S., Kellam, J. F., "Biomaterial developments for bone tissue engineering", Biomaterials. vol. 21, no. 23, pp. 2347-2359, 2000.
[5] Ma, P. X., "Biomimetic materials for tissue engineering", Adv Drug Deliver Rev. vol. 60, no. 2, pp. 184-198, 2008.
[6] Shin, H., Jo, S., Mikos, A. G., "Biomimetic materials for tissue engineering", Biomaterials. vol. 24, no. 24, pp. 4353-4364, 2003.
[7] Langer, R., Vacanti, J. P., "Tissue Engineering", Science. vol. 260, no. 5110, pp. 920-926, 1993.
[8] Eisen, M. B., Brown, P. O., "DNA arrays for analysis of gene expression", Cdna Preparation and Characterization. vol. 303, no., pp. 179-205, 1999.
[9] Zhu, H., Snyder, M., "Protein chip technology", Curr Opin Chem Biol. vol. 7, no. 1, pp. 55-63, 2003.
[10] Ratner, B. D., Bryant, S. J., "Biomaterials: Where we have been and where we are going", Annu Rev Biomed Eng. vol. 6, no., pp. 41-75, 2004.
[11] Stangel, K., et al., "A programmable intraocular CMOS pressure sensor system implant", Ieee J Solid-St Circ. vol. 36, no. 7, pp. 1094-1100, 2001.
[12] Chin, C. D., Linder, V., Sia, S. K., "Commercialization of microfluidic point-of-care diagnostic devices", Lab Chip. vol. 12, no. 12, pp. 2118- 2134, 2012.
[13] Zhang, W., Du, Y., Wang, M. L., "On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase", Sensing and Bio-Sensing Research. vol. 4, no. 0, pp. 96-102, 2015.
[14] Zhang, W., Du, Y., Wang, M. L., "Noninvasive glucose monitoring using saliva nano-biosensor", Sensing and Bio-Sensing Research. vol. 4, no. 0, pp. 23-29, 2015.
[15] Zhang, W. J., Wang, M. L., "DNA-functionalized single-walled carbon nanotube-based sensor array for breath analysis", International Journal of Electronics and Electronical Engineering. vol. 4, no. 2, pp. 177-180, 2016.
[16] Herr, A. E., et al., "Microfluidic immunoassays as rapid saliva-based clinical diagnostics", Proceedings of the National Academy of Sciences of the United States of America. vol. 104, no. 13, pp. 5268-5273, 2007.
[17] Santini, J. T., Cima, M. J., Langer, R., "A controlled-release microchip", Nature. vol. 397, no. 6717, pp. 335-338, 1999.
[18] Yoshida, R., et al., "Maskless microfabrication of thermosensitive gels using a microscope and application to a controlled release microchip", Lab Chip. vol. 6, no. 10, pp. 1384-1386, 2006.
[19] Grayson, A. C. R., et al., "Multi-pulse drug delivery from a resorbable polymeric microchip device", Nature Materials. vol. 2, no. 11, pp. 767- 772, 2003.
[20] Service, R. F., "Microchip arrays put DNA on the spot", Science. vol. 282, no. 5388, pp. 396-+, 1998.
[21] Figeys, D., Pinto, D., "Lab-on-a-chip: A revolution in biological and medical sciences.", Analytical Chemistry. vol. 72, no. 9, pp. 330a-335a, 2000.
[22] ODonnellMaloney, M. J., Little, D. P., "Microfabrication and array technologies for DNA sequencing and diagnostics", Genet Anal-Biomol E. vol. 13, no. 6, pp. 151-157, 1996.
[23] Sanders, G. H. W., Manz, A., "Chip-based microsystems for genomic and proteomic analysis", Trac-Trend Anal Chem. vol. 19, no. 6, pp. 364- 378, 2000.
[24] Weigl, B. H., Bardell, R. L., Cabrera, C. R., "Lab-on-a-chip for drug development", Adv Drug Deliver Rev. vol. 55, no. 3, pp. 349-377, 2003.
[25] Andersson, H., van den Berg, A., "Microtechnologies and nanotechnologies for single-cell analysis", Curr Opin Biotech. vol. 15, no. 1, pp. 44-49, 2004.
[26] Watson, J. D., Crick, F. H. C., "Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid", Nature. vol. 171, no. 4356, pp. 737-738, 1953.
[27] Vanness, J., et al., "A Versatile Solid Support System for Oligodeoxynucleotide Probe-Based Hybridization Assays", Nucleic Acids Res. vol. 19, no. 12, pp. 3345-3350, 1991.
[28] Hvastkovs, E. G., Buttry, D. A., "Recent advances in electrochemical DNA hybridization sensors", Analyst. vol. 135, no. 8, pp. 1817-1829, 2010.
[29] Rogers, K. R., Apostol, A., Madsen, S. J., Spencer, C. W., "Fiber optic biosensor for detection of DNA damage", Anal Chim Acta. vol. 444, no. 1, pp. 51-60, 2001.
[30] Wang, J., et al., "Indicator-free electrochemical DNA hybridization biosensor", Anal Chim Acta. vol. 375, no. 3, pp. 197-203, 1998.
[31] Ban, C. G., Chung, S. M., Park, D. S., Shim, Y. B., "Detection of protein-DNA interaction with a DNA probe: distinction between singlestrand and double-strand DNA-protein interaction", Nucleic Acids Res. vol. 32, no. 13, pp., 2004.
[32] Leung, C. H., et al., "Luminescent detection of DNA-binding proteins", Nucleic Acids Res. vol. 40, no. 3, pp. 941-955, 2012.
[33] Li, J., Lu, Y., "A highly sensitive and selective catalytic DNA biosensor for lead ions", Journal of the American Chemical Society. vol. 122, no. 42, pp. 10466-10467, 2000.
[34] Zhang, Z., Hejesen, C., Kjelstrup, M. B., Birkedal, V., Gothelf, K. V., "A DNA-Mediated Homogeneous Binding Assay for Proteins and Small Molecules", Journal of the American Chemical Society. vol. 136, no. 31, pp. 11115-11120, 2014.
[35] Vo-Dinh, T., Cullum, B. M., Stokes, D. L., "Nanosensors and biochips: frontiers in biomolecular diagnostics", Sensors and Actuators BChemical. vol. 74, no. 1-3, pp. 2-11, 2001.
[36] Chen, X. F., et al., "Real-time detection of DNA interactions with longperiod fiber-grating-based biosensor", Opt Lett. vol. 32, no. 17, pp. 2541-2543, 2007.
[37] Odenthal, K. J., Gooding, J. J., "An introduction to electrochemical DNA biosensors", Analyst. vol. 132, no. 7, pp. 603-610, 2007.
[38] Wang, J., "Electrochemical biosensors: Towards point-of-care cancer diagnostics", Biosens Bioelectron. vol. 21, no. 10, pp. 1887-1892, 2006.
[39] Kinsella, J. M., Ivanisevic, A., "Biosensing - Taking charge of biomolecules", Nature Nanotechnology. vol. 2, no. 10, pp. 596-597, 2007.
[40] Mannelli, F., et al., "Direct immobilisation of DNA probes for the development of affinity biosensors", Bioelectrochemistry. vol. 66, no. 1- 2, pp. 129-138, 2005.
[41] Garcia-Martinez, G., et al., "Development of a Mass Sensitive Quartz Crystal Microbalance (QCM)-Based DNA Biosensor Using a 50 MHz Electronic Oscillator Circuit", Sensors. vol. 11, no. 8, pp. 7656-7664, 2011.
[42] Cooper, C. S., "Applications of microarray technology in breast cancer research", Breast Cancer Res. vol. 3, no. 3, pp. 158-175, 2001.
[43] Triche, T. J., Schofield, D., Buckley, J., "DNA microarrays in pediatric cancer", Cancer J. vol. 7, no. 1, pp. 2-15, 2001.
[44] Grouse, L. H., Munson, P. J., Nelson, P. S., "Sequence databases and microarrays as tools for identifying prostate cancer biomarkers", Urology. vol. 57, no. 4A, pp. 154-159, 2001.
[45] Schena, M., "Genome analysis with gene expression microarrays", Bioessays. vol. 18, no. 5, pp. 427-431, 1996.
[46] Schena, M., et al., "Microarrays: biotechnology's discovery platform for functional genomics", Trends Biotechnol. vol. 16, no. 7, pp. 301-306, 1998.
[47] Service, R. F., "Microchip Arrays Put DNA on the Spot", Science. vol. 282, no. 5388, pp. 396-399, 1998.
[48] Barry CE, r., M, W., R, L., GK, S., "DNA microarrays and combinatorial chemical libraries: tools for the drug", Int J Tuberc Lung Dis. vol. 12, no. 2, pp. 189-93, 2000.
[49] Staii, C., Johnson, A. T., "DNA-decorated carbon nanotubes for chemical sensing", Nano Lett. vol. 5, no. 9, pp. 1774-1778, 2005.
[50] Kang, Z., et al., "Single-Stranded DNA Functionalized Single-Walled Carbon Nanotubes for Microbiosensors via Layer-by-Layer Electrostatic Self-Assembly", Acs Appl Mater Inter. vol. 6, no. 6, pp. 3784-3789, 2014.
[51] Dwyer, C., et al., "DNA-functionalized single-walled carbon nanotubes", Nanotechnology. vol. 13, no. 5, pp. 601-604, 2002.
[52] Pinheiro, A. V., Han, D., Shih, W. M., Yan, H., "Challenges and opportunities for structural DNA nanotechnology", Nat Nano. vol. 6, no. 12, pp. 763-772, 2011.
[53] Linko, V., Dietz, H., "The enabled state of DNA nanotechnology", Curr Opin Biotech. vol. 24, no. 4, pp. 555-561, 2013.
[54] Noy, A., Artyukhin, A. B., Misra, N., "Bionanoelectronics with 1D materials", Mater Today. vol. 12, no. 9, pp. 22-31, 2009.
[55] Zhang, W., Wang, M. L., Khalili, S., Cranford, S. W., "Materiomics for oral disease diagnostics and personal health monitoring:designer biomaterials for the next generation biomarkers", OMICS: A Journal of Integrative Biology. vol. to be published, no. Oral Medicine Biomarkers: Towards One Health, pp., 2015.
[56] Zhang, W. J., Wang, M. L., Cranford, S. W., "Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics", Sci Rep-Uk. vol. to be published, no., pp., 2015.
[57] Aravind, S. S. J., Ramaprabhu, S., "Noble metal dispersed multiwalled carbon nanotubes immobilized ss-DNA for selective detection of dopamine", Sensors and Actuators B-Chemical. vol. 155, no. 2, pp. 679- 686, 2011.
[58] Johnson, A. T. C., Khamis, S. M., Preti, G., Kwak, J., Gelperin, A., "DNA-Coated Nanosensors for Breath Analysis", Ieee Sens J. vol. 10, no. 1, pp. 159-166, 2010.
[59] Babkina, S. S., Ulakhovich, N. A., Zyavkina, Y. I., "Amperometric DNA biosensor for the determination of auto-antibodies using DNA interaction with Pt(II) complex", Anal Chim Acta. vol. 502, no. 1, pp. 23-30, 2004.
[60] Evtugyn, G. A., Goldfarb, O. E., Budnikov, H. C., Ivanov, A. N., Vinter, V. G., "Amperometric DNA-peroxidase sensor for the detection of pharmaceutical preparations", Sensors. vol. 5, no. 6-10, pp. 364-376, 2005.
[61] Drummond, T. G., Hill, M. G., Barton, J. K., "Electrochemical DNA sensors", Nat. Biotechnol. vol. 21, no. 10, pp. 1192-1199, 2003.
[62] Liu, Y., et al. "Single chip Nanotube sensors for chemical agent monitoring", 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, 5-9 June 2011; Beijing, China, 2011; pp. 795-798.
[63] Greiter, M. B., et al., "Differences in Exhaled Gas Profiles Between Patients with Type 2 Diabetes and Healthy Controls", Diabetes Technol The. vol. 12, no. 6, pp. 455-463, 2010.
[64] Miekisch, W., Schubert, J. K., Noeldge-Schomburg, G. F. E., "Diagnostic potential of breath analysis - focus on volatile organic compounds", Clin Chim Acta. vol. 347, no. 1-2, pp. 25-39, 2004.
[65] Minh, T. D. C., et al., "Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects", Am J Physiol-Endoc M. vol. 300, no. 6, pp. E1166-E1175, 2011.
[66] Mj, H., Ba, K., Ga, W. S., "Acetone in the breath: a study of acetone exhalation in diabetic and nondiabetic human subjects", Diabetes. vol. 1, no. 3, pp. 188-93, 1952.
[67] Sulway, M. J., Malins, J. M., "Acetone in Diabetic Ketoacidosis", The Lancet. vol. 296, no. 7676, pp. 736-740, 1970.
[68] Plimpton, S., "Fast Parallel Algorithms for Short-Range Molecular- Dynamics", J Comput Phys. vol. 117, no. 1, pp. 1-19, 1995.
[69] Laboratories, S. N. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/.
[70] Deuflhard, P., et al., Computational molecular dynamics : challenges, methods, ideas : proceedings of the 2nd International Symposium on Algorithms for Macromolecular Modelling, Berlin, May 21-24, 1997. Springer Berlin Heidelberg: 1999.
[71] Molnar, F., Ben-Nun, M., Martinez, T. J., Schulten, K., "Characterization of a conical intersection between the ground and first excited state for a retinal analog", J Mol Struc-Theochem. vol. 506, no., pp. 169-178, 2000.
[72] Izrailev, S., Stepaniants, S., Balsera, M., Oono, Y., Schulten, K., "Molecular dynamics study of unbinding of the avidin-biotin complex", Biophys J. vol. 72, no. 4, pp. 1568-1581, 1997.
[73] Hornak, V., Dvorsky, R., Sturdik, E., "Receptor-ligand interaction and molecular modelling", Gen Physiol Biophys. vol. 18, no. 3, pp. 231-248, 1999.