WASET
	%0 Journal Article
	%A Qing Liu and  Jean-Fabien Capsal and  Claude Richard
	%D 2015
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 108, 2015
	%T Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TrFE-CTFE) Terpolymer
	%U https://publications.waset.org/pdf/10003330
	%V 108
	%X In this current contribution, authors are dedicated to
investigate influence of the crystal lamellae orientation on
electromechanical behaviors of relaxor ferroelectric Poly
(vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene)
(P(VDF-TrFE-CTFE)) films by control of polymer microstructure,
aiming to picture the full map of structure-property relationship. In
order to define their crystal orientation films, terpolymer films were
fabricated by solution-casting, stretching and hot-pressing process.
Differential scanning calorimetry, impedance analyzer, and tensile
strength techniques were employed to characterize crystallographic
parameters, dielectric permittivity, and elastic Young’s modulus
respectively. In addition, large electrical induced out-of-plane
electrostrictive strain was obtained by cantilever beam mode.
Consequently, as-casted pristine films exhibited surprisingly high
electrostrictive strain 0.1774% due to considerably small value of
elastic Young’s modulus although relatively low dielectric
permittivity. Such reasons contributed to large mechanical elastic
energy density. Instead, due to 2 folds increase of elastic Young’s
modulus and less than 50% augmentation of dielectric constant, fullycrystallized
film showed weak electrostrictive behavior and
mechanical energy density as well. And subjected to mechanical
stretching process, Film C exhibited stronger dielectric constant and
out-performed electrostrictive strain over Film B because edge-on
crystal lamellae orientation induced by uniaxially mechanical stretch.
Hot-press films were compared in term of cooling rate. Rather large
electrostrictive strain of 0.2788% for hot-pressed Film D in
quenching process was observed although its dielectric permittivity
equivalent to that of pristine as-casted Film A, showing highest
mechanical elastic energy density value of 359.5 J/m3. In hot-press
cooling process, dielectric permittivity of Film E saw values at 48.8
concomitant with ca.100% increase of Young’s modulus. Films with
intermediate mechanical energy density were obtained.

	%P 1489 - 1498