WASET
	%0 Journal Article
	%A Erik Vassøy Olsen and  Hirpa G. Lemu
	%D 2016
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 109, 2016
	%T Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
	%U https://publications.waset.org/pdf/10003140
	%V 109
	%X Inspired by the Formula-1 competition, IMechE
(Institute of Mechanical Engineers) and Formula SAE (Society of
Mechanical Engineers) organize annual competitions for University
and College students worldwide to compete with a single-seat racecar
they have designed and built. Design of the chassis or the frame is a
key component of the competition because the weight and stiffness
properties are directly related with the performance of the car and the
safety of the driver. In addition, a reduced weight of the chassis has
direct influence on the design of other components in the car. Among
others, it improves the power to weight ratio and the aerodynamic
performance. As the power output of the engine or the battery
installed in the car is limited to 80 kW, increasing the power to
weight ratio demands reduction of the weight of the chassis, which
represents the major part of the weight of the car. In order to reduce
the weight of the car, ION Racing team from University of
Stavanger, Norway, opted for a monocoque design. To ensure
fulfilment of the competition requirements of the chassis, the
monocoque design should provide sufficient torsional stiffness and
absorb the impact energy in case of possible collision. The study reported in this article is based on the requirements for
Formula Student competition. As part of this study, diverse
mechanical tests were conducted to determine the mechanical
properties and performances of the monocoque design. Upon a
comprehensive theoretical study of the mechanical properties of
sandwich composite materials and the requirements of monocoque
design in the competition rules, diverse tests were conducted
including 3-point bending test, perimeter shear test and test for
absorbed energy. The test panels were homemade and prepared with
equivalent size of the side impact zone of the monocoque, i.e. 275
mm x 500 mm, so that the obtained results from the tests can be
representative. Different layups of the test panels with identical core
material and the same number of layers of carbon fibre were tested
and compared. Influence of the core material thickness was also
studied. Furthermore, analytical calculations and numerical analysis
were conducted to check compliance to the stated rules for Structural
Equivalency with steel grade SAE/AISI 1010. The test results were
also compared with calculated results with respect to bending and
torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition
and strength of the composite material selected for the monocoque
design has equivalent structural properties as a welded frame and thus
comply with the competition requirements. The developed analytical
calculation algorithms and relations will be useful for future
monocoque designs with different lay-ups and compositions.
	%P 1 - 9