WASET
	%0 Journal Article
	%A S. Sharma and  U. Batra and  S. Kapoor and  A. Dua
	%D 2015
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 108, 2015
	%T The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite
	%U https://publications.waset.org/pdf/10003117
	%V 108
	%X In this study, the effects and interactions of reaction
time and capping agent assistance during sol-gel synthesis of
magnesium substituted hydroxyapatite nanopowder (MgHA) on
hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P
ratio and mean crystallite size was examined experimentally as well
as through statistical analysis. MgHA nanopowders were synthesized
by sol-gel technique at room temperature using aqueous solution of
calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and
potassium dihydrogen phosphate as starting materials. The reaction
time for sol-gel synthesis was varied between 15 to 60 minutes. Two
process routes were followed with and without addition of
triethanolamine (TEA) in the solutions. The elemental compositions
of as-synthesized powders were determined using X-ray fluorescence
(XRF) spectroscopy. The functional groups present in the assynthesized
MgHA nanopowders were established through Fourier
Transform Infrared Spectroscopy (FTIR). The amounts of phases
present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders
were determined using X-ray diffraction (XRD). The HA content in
biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized
MgHA nanopowders increased effectively with reaction time of sols
(p0.15, two way ANOVA). The MgHA nanopowders
synthesized with TEA assistance exhibited 14 nm lower crystallite
size (p
	%P 1398 - 1404