WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002958,
	  title     = {Phage Capsid for Efficient Delivery of Cytotoxic Drugs},
	  author    = {Simona Dostalova and  Ana Maria Jimenez Jimenez and  Marketa Vaculovicova and  Vojtech Adam and  Rene Kizek},
	  country	= {},
	  institution	= {},
	  abstract     = {Various nanomaterials can be used as a drug delivery
vehicles in nanomedicine, called nanocarriers. They can either be
organic or inorganic, synthetic or natural-based. Although synthetic
nanocarriers are easier to produce, they can often be toxic for the
organism and thus not suitable for use in treatment. From naturalbased
nanocarriers, the most commonly used are protein cages or
viral capsids. In this work, virus bacteriophage λ was used for
delivery of different cytotoxic drugs (cisplatin, carboplatin,
oxaliplatin and doxorubicin). Large quantities of phage λ were
obtained from phage λ-producing strain of E. coli cultivated in
medium with 0.2% maltose. After killing of E. coli with chloroform
and its removal by centrifugation, the phage was concentrated by
ultracentrifugation at 130 000×g and 4°C for 3 h. The encapsulation
of the drugs was performed by infusion method and four different
concentrations of the drugs were encapsulated (200; 100; 50; 25
μg·mL-1). Free drug molecules were removed by filtration. The
encapsulation was verified using the absorbance for doxorubicin and
atomic absorption spectrometry for platinum cytostatics. The amount
of encapsulated drug linearly increased with the increasing
concentration of applied drug with the determination coefficient
R2=0.989 for doxorubicin; R2=0.967 for cisplatin; R2=0.989 for
carboplatin and R2=0.996 for oxaliplatin. The overall encapsulation
efficiency was calculated as 50% for doxorubicin; 8% for cisplatin;
6% for carboplatin and 10% for oxaliplatin.},
	    journal   = {International Journal of Pharmacological and Pharmaceutical Sciences},
	  volume    = {9},
	  number    = {7},
	  year      = {2015},
	  pages     = {601 - 604},
	  ee        = {https://publications.waset.org/pdf/10002958},
	  url   	= {https://publications.waset.org/vol/103},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 103, 2015},
	}