WASET
	%0 Journal Article
	%A S. Apprich and  F. Wulle and  A. Lechler and  A. Pott and  A. Verl
	%D 2015
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 106, 2015
	%T Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines
	%U https://publications.waset.org/pdf/10002894
	%V 106
	%X Large-scale machine tools for the manufacturing of
large work pieces, e.g. blades, casings or gears for wind turbines,
feature pose-dependent dynamic behavior. Small structural damping
coefficients lead to long decay times for structural vibrations that
have negative impacts on the production process. Typically, these
vibrations are handled by increasing the stiffness of the structure by
adding mass. This is counterproductive to the needs of sustainable
manufacturing as it leads to higher resource consumption both in
material and in energy. Recent research activities have led to higher
resource efficiency by radical mass reduction that is based on controlintegrated
active vibration avoidance and damping methods. These
control methods depend on information describing the dynamic
behavior of the controlled machine tools in order to tune the
avoidance or reduction method parameters according to the current
state of the machine. This paper presents the appearance, consequences and challenges
of the pose-dependent dynamic behavior of lightweight large-scale
machine tool structures in production. It starts with the theoretical
introduction of the challenges of lightweight machine tool structures
resulting from reduced stiffness. The statement of the pose-dependent
dynamic behavior is corroborated by the results of the experimental
modal analysis of a lightweight test structure. Afterwards, the
consequences of the pose-dependent dynamic behavior of lightweight
machine tool structures for the use of active control and vibration
reduction methods are explained. Based on the state of the art of
pose-dependent dynamic machine tool models and the modal
investigation of an FE-model of the lightweight test structure, the
criteria for a pose-dependent model for use in vibration reduction are
derived. The description of the approach for a general posedependent
model of the dynamic behavior of large lightweight
machine tools that provides the necessary input to the aforementioned
vibration avoidance and reduction methods to properly tackle
machine vibrations is the outlook of the paper.
	%P 1836 - 1843