WASET
	%0 Journal Article
	%A H. Yousefnia and  S. Zolghadri
	%D 2015
	%J International Journal of Biomedical and Biological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 105, 2015
	%T Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent
	%U https://publications.waset.org/pdf/10002821
	%V 105
	%X An early diagnosis of bone metastasis is very
important for making a right decision on a subsequent therapy. One
of the most important steps to be taken initially, for developing a new
radiopharmaceutical is the measurement of organ radiation exposure
dose. In this study, the dosimetric studies of a novel agent for
SPECT-imaging of the bone metastasis, 111In-(4-
{[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl)
-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD)
complex, have been carried out to estimate the dose in human organs
based on the data derived from mice. The radiolabeled complex was
prepared with high radiochemical purity in the optimal conditions.
Biodistribution studies of the complex was investigated in the male
Syrian mice at the selected times after injection (2, 4, 24 and 48 h).
The human absorbed dose estimation of the complex was made based
on data derived from the mice by the radiation absorbed dose
assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical
purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total
body effective absorbed dose for 111In-BPAMD was 0.205
mSv/MBq. This value is comparable to the other 111In clinically used
complexes. The results show that the dose with respect to the critical
organs is satisfactory within the acceptable range for diagnostic
nuclear medicine procedures. Generally, 111In-BPAMD has
interesting characteristics and it can be considered as a viable agent
for SPECT-imaging of the bone metastasis in the near future.
	%P 722 - 726