WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002813,
	  title     = {Stabilization of Clay Soil Using A-3 Soil},
	  author    = {Mohammed Mustapha Alhaji and  Salawu Sadiku},
	  country	= {},
	  institution	= {},
	  abstract     = {A clay soil classified as A-7-6 and CH soil according
to AASHTO and unified soil classification system respectively, was
stabilized using A-3 soil (AASHTO soil classification system). The
clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil,
compacted at both British Standard Light (BSL) and British Standard
Heavy (BSH) compaction energy levels and using Unconfined
Compressive Strength (UCS) as evaluation criteria. The Maximum
Dry Density (MDD) of the treated soils at both the BSL and BSH
compaction energy levels showed increase from 0% to 40% A-3 soil
replacement after which the values reduced to 100% replacement.
The trend of the Optimum Moisture Content (OMC) with varied A-3
soil replacement was similar to that of MDD but in a reversed order.
The OMC reduced from 0% to 40% A-3 soil replacement after which
the values increased to 100% replacement. This trend was attributed
to the observed reduction in void ratio from 0% to 40% replacement
after which the void ratio increased to 100% replacement. The
maximum UCS for the soil at varied A-3 soil replacement increased
from 272 and 770 kN/m2 for BSL and BSH compaction energy level
at 0% replacement to 295 and 795 kN/m2 for BSL and BSH
compaction energy level respectively at 10% replacement after which
the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction
energy level respectively at 70% replacement. Beyond 70%
replacement, the mixtures could not be moulded for UCS test.},
	    journal   = {International Journal of Geological and Environmental Engineering},
	  volume    = {9},
	  number    = {10},
	  year      = {2015},
	  pages     = {1272 - 1276},
	  ee        = {https://publications.waset.org/pdf/10002813},
	  url   	= {https://publications.waset.org/vol/106},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 106, 2015},
	}