WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002707,
	  title     = {Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP},
	  author    = {Guillaume Mullier and  Jean François Chatelain},
	  country	= {},
	  institution	= {},
	  abstract     = {Carbon Fiber Reinforced Plastics (CFRPs) are widely
used for advanced applications, in particular in aerospace, automotive
and wind energy industries. Once cured to near net shape, CFRP
parts need several finishing operations such as trimming, milling or
drilling in order to accommodate fastening hardware and meeting the
final dimensions. The present research aims to study the effect of the
cutting temperature in trimming on the mechanical strength of high
performance CFRP laminates used for aeronautics applications. The
cutting temperature is of great importance when dealing with
trimming of CFRP. Temperatures higher than the glass-transition
temperature (Tg) of the resin matrix are highly undesirable: they
cause degradation of the matrix in the trimmed edges area, which can
severely affect the mechanical performance of the entire component.
In this study, a 9.50mm diameter CVD diamond coated carbide tool
with six flutes was used to trim 24-plies CFRP laminates. A
300m/min cutting speed and 1140mm/min feed rate were used in the
experiments. The tool was heated prior to trimming using a
blowtorch, for temperatures ranging from 20°C to 300°C. The
temperature at the cutting edge was measured using embedded KType
thermocouples. Samples trimmed for different cutting
temperatures, below and above Tg, were mechanically tested using
three-points bending short-beam loading configurations. New cutting
tools as well as worn cutting tools were utilized for the experiments.
The experiments with the new tools could not prove any correlation
between the length of cut, the cutting temperature and the mechanical
performance. Thus mechanical strength was constant, regardless of
the cutting temperature. However, for worn tools, producing a cutting
temperature rising up to 450°C, thermal damage of the resin was
observed. The mechanical tests showed a reduced mean resistance in
short beam configuration, while the resistance in three point bending
decreases with increase of the cutting temperature.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {8},
	  year      = {2015},
	  pages     = {1559 - 1566},
	  ee        = {https://publications.waset.org/pdf/10002707},
	  url   	= {https://publications.waset.org/vol/104},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 104, 2015},
	}