WASET
	%0 Journal Article
	%A Kenneth A. Ibe and  Justina I. Mbonu and  Godgift K. Umukoro
	%D 2015
	%J International Journal of Environmental and Ecological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 102, 2015
	%T The Effects of Wood Ash on Ignition Point of Wood
	%U https://publications.waset.org/pdf/10002662
	%V 102
	%X The effects of wood ash from five common tropical
woods on the ignition point of four common tropical woods in
Nigeria were investigated. The ash and moisture contents of the wood
sawdust from Mahogany (Khaya ivorensis), Opepe (Sarcocephalus
latifolius), Abura (Mitragyna ciliata), Rubber (Heavea brasilensis)
and Poroporo (Sorghum bicolour) used, were determined using a
furnace (Vecstar furnaces, model ECF2, serial no. f3077) and oven
(Genlab laboratory oven, model MINO/040) respectively. The metal
contents of the five wood sawdust ash samples were determined
using a Perkin Elmer optima 3000 dv atomic absorption spectrometer
while the ignition points were determined using Vecstar furnaces
model ECF2. Poroporo had the highest ash content, 2.263g while
rubber had the least, 0.710g. The results for the moisture content
range from 2.971g to 0.903g. Magnesium metal had the highest
concentration of all the metals, in all the wood ash samples; with
mahogany ash having the highest concentration, 9.196ppm while
rubber ash had the least concentration of magnesium metal, 2.196
ppm. The ignition point results showed that the wood ashes from
mahogany and opepe increased the ignition points of the test wood
samples, Danta (Nesogordonia papaverifera), Ekpaya, Akomu
(Pycnanthus angolensis) and Oleku when coated on them while the
ashes from poroporo, rubber and abura decreased the ignition points
of the test wood samples when coated on them. However, Opepe saw
dust ash decreased the ignition point in one of the test wood samples,
suggesting that the metal content of the test wood sample was more
than that of the Opepe saw dust ash. Therefore, Mahogany and Opepe
saw dust ashes could be used in the surface treatment of wood to
enhance their fire resistance or retardancy. However, the caution to
be exercised in this application is that the metal content of the test
wood samples should be evaluated as well.
	%P 769 - 772