Photocatalytic Degradation of Organic Pollutant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Photocatalytic Degradation of Organic Pollutant Reacting with Tungstates: Role of Microstructure and Size Effect on Oxidation Kinetics

Authors: A. Taoufyq, B. Bakiz, A. Benlhachemi, L. Patout, D. V. Chokouadeua, F. Guinneton, G. Nolibe, A. Lyoussi, J-R. Gavarri

Abstract:

The aim of this study was to investigate the photocatalytic activity of polycrystalline phases of bismuth tungstate of formula Bi2WO6. Polycrystalline samples were elaborated using a coprecipitation technique followed by a calcination process at different temperatures (300, 400, 600 and 900°C). The obtained polycrystalline phases have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Crystal cell parameters and cell volume depend on elaboration temperature. High-resolution electron microscopy images and image simulations, associated with X-ray diffraction data, allowed confirming the lattices and space groups Pca21. The photocatalytic activity of the as-prepared samples was studied by irradiating aqueous solutions of Rhodamine B, associated with Bi2WO6 additives having variable crystallite sizes. The photocatalytic activity of such bismuth tungstates increased as the crystallite sizes decreased. The high specific area of the photocatalytic particles obtained at 300°C seems to condition the degradation kinetics of RhB.

Keywords: Bismuth tungstate, crystallite sizes, electron microscopy, photocatalytic activity, X-ray diffraction.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1109063

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020

References:


[1] A. Fujishima, K. Honda, Nature 238 (1972) 37-38.
[2] J.M. Herrmann, Catal. Today 53 (1999) 115-129.
[3] M.A. Fox, M.T. Dulay, Chem. Rev. 93 (1993) 341-357.
[4] M. Saquib, M. Muneer, Dyes and Pigments 56 (2003) 37-49.
[5] X.B. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891–2959
[6] J.W. Tang, Z.G. Zou, J.H. Ye, Catal. Lett. 92 (2004) 53-56.
[7] J.G. Yu, J.F. Xiong, B. Cheng, Y. Yu, J.B. Wang, J. Solid State Chem.178 (2005) 1968-1972.
[8] H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, J. Phys. Chem. B 109 (2005) 22432-22439.
[9] Z. He, C. Sun, S. Yang, Y. Ding, H. He, Z. Wang, hazard. Mater.162 (2009) 1477-1486.
[10] S. Murcia López, M.C. Hidalgo, J.A. Navío, G. Colón, hazard. Mater. 185 (2011) 1425-1434.
[11] S. Obregon Alfaro, A. Martinez-De La Cruz, Appl. Catal., A 383 (2010) 128-133.
[12] A. Taoufyq , H. Ait Ahsaine , L. Patout , A. Benlhachemi, M. Ezahri, F. Guinneton, A. Lyoussi, G. Nolibe, J-R. Gavarri, J. Solid State Chem. 203 (2013) 8-18.
[13] T. Roisnel, J. Rodrı´guez-Carvajal, in: R. Delhez, E. J. Mittenmeijer (Barcelona, Spain) (Eds.), Proceedings of the Seventh European Powder Diffraction Conference (2000) 118–123.
[14] J.F Berar, Ecole Centrale de Paris, 92295 Châtenay-Malabry Private Communication (1989).
[15] Cullity B.D, edition Addison-Wesley Publishing Co (1956) 98-99.
[16] Pullar, R.C., Taylor M.D., Bhattacharya, A.K., J. Eur. Ceram. Soc. 18 (1988) 1759-1764.
[17] Azàroff L.V., McGraw-Hill, New-York (1968) 331-568.
[18] S. Hovmöller, Ultramicroscopy. 41 (1992) 121-135.
[19] P. Stadelmann, Ultramicroscopy. 21 (1987) 131-146
[20] P. Dumrongrojthanath, T. Thongtem, A. Phuruangrat, S. Thongtem, Superlattices and Microstruc. 54 (2013) 71–77.
[21] H. Fu, L. Zhang, W. Yao, Y. Zhu, Appl. Catal., B. 66 (2006) 100-110.