WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002428,
	  title     = {Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials},
	  author    = {Ergin Kosa and  Ali Göksenli},
	  country	= {},
	  institution	= {},
	  abstract     = {Erosion and abrasion are wear mechanisms reducing
the lifetime of machine elements like valves, pump and pipe systems.
Both wear mechanisms are acting at the same time, causing a
“Synergy” effect, which leads to a rapid damage of the surface.
Different parameters are effective on erosive abrasive wear rate. In
this study effect of particle impact angle on wear rate and wear
mechanism of ductile and brittle materials was investigated. A new
slurry pot was designed for experimental investigation. As abrasive
particle, silica sand was used. Particle size was ranking between 200-
500 μm. All tests were carried out in a sand-water mixture of 20%
concentration for four hours. Impact velocities of the particles were
4.76 m/s. As ductile material steel St 37 with Vickers Hardness
Number (VHN) of 245 and quenched St 37 with 510 VHN was used
as brittle material. After wear tests, morphology of the eroded
surfaces were investigated for better understanding of the wear
mechanisms acting at different impact angles by using Scanning
Electron Microscope. The results indicated that wear rate of ductile
material was higher than brittle material. Maximum wear rate was
observed by ductile material at a particle impact angle of 300 and
decreased further by an increase in attack angle. Maximum wear rate
by brittle materials was by impact angle of 450 and decreased further
up to 900. Ploughing was the dominant wear mechanism by ductile
material. Microcracks on the surface were detected by ductile
materials, which are nucleation centers for crater formation. Number
of craters decreased and depth of craters increased by ductile
materials by attack angle higher than 300. Deformation wear
mechanism was observed by brittle materials. Number and depth of
pits decreased by brittle materials by impact angles higher than 450.
At the end it is concluded that wear rate could not be directly related
to impact angle of particles due to the different reaction of ductile and
brittle materials.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {9},
	  year      = {2015},
	  pages     = {1638 - 1642},
	  ee        = {https://publications.waset.org/pdf/10002428},
	  url   	= {https://publications.waset.org/vol/105},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 105, 2015},
	}