WASET
	%0 Journal Article
	%A Gianpaolo Ghiani and  Emanuela Guerriero and  Emanuele Manni and  Alessandro Romano
	%D 2015
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 103, 2015
	%T Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
	%U https://publications.waset.org/pdf/10002234
	%V 103
	%X In this article, we deal with a variant of the classical
course timetabling problem that has a practical application in many
areas of education. In particular, in this paper we are interested in
high schools remedial courses. The purpose of such courses is to
provide under-prepared students with the skills necessary to succeed
in their studies. In particular, a student might be under prepared in
an entire course, or only in a part of it. The limited availability
of funds, as well as the limited amount of time and teachers at
disposal, often requires schools to choose which courses and/or which
teaching units to activate. Thus, schools need to model the training
offer and the related timetabling, with the goal of ensuring the
highest possible teaching quality, by meeting the above-mentioned
financial, time and resources constraints. Moreover, there are some
prerequisites between the teaching units that must be satisfied. We
first present a Mixed-Integer Programming (MIP) model to solve
this problem to optimality. However, the presence of many peculiar
constraints contributes inevitably in increasing the complexity of
the mathematical model. Thus, solving it through a general-purpose
solver may be performed for small instances only, while solving
real-life-sized instances of such model requires specific techniques
or heuristic approaches. For this purpose, we also propose a heuristic
approach, in which we make use of a fast constructive procedure
to obtain a feasible solution. To assess our exact and heuristic
approaches we perform extensive computational results on both
real-life instances (obtained from a high school in Lecce, Italy) and
randomly generated instances. Our tests show that the MIP model is
never solved to optimality, with an average optimality gap of 57%.
On the other hand, the heuristic algorithm is much faster (in about the
50% of the considered instances it converges in approximately half of
the time limit) and in many cases allows achieving an improvement
on the objective function value obtained by the MIP model. Such an
improvement ranges between 18% and 66%.
	%P 1724 - 1729