WASET
	%0 Journal Article
	%A Khalid S. Hashim and  Andy Shaw and  Rafid Alkhaddar and  Montserrat Ortoneda Pedrola
	%D 2015
	%J International Journal of Environmental and Ecological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 104, 2015
	%T Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor
	%U https://publications.waset.org/pdf/10002185
	%V 104
	%X A flow column has been innovatively used in the
design of a new electrocoagulation reactor (ECR1) that will reduce
the temperature of water being treated; where the flow columns work
as a radiator for the water being treated. In order to investigate the
performance of ECR1 and compare it to that of traditional reactors;
600 mL water samples with an initial temperature of 350C were
pumped continuously through these reactors for 30 min at current
density of 1 mA/cm2. The temperature of water being treated was
measured at 5 minutes intervals over a 30 minutes period using a
thermometer. Additional experiments were commenced to investigate
the effects of initial temperature (15-350C), water conductivity (0.15
– 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of
ECR1.
The results obtained demonstrated that the ECR1, at a current
density of 1 mA/cm2 and continuous flow model, reduced water
temperature from 350C to the vicinity of 280C during the first 15
minutes and kept the same level till the end of the treatment time.
While, the temperature increased from 28.1 to 29.80C and from 29.8
to 31.90C in the batch and the traditional continuous flow models
respectively. In term of initial temperature, ECR1 maintained the
temperature of water being treated within the range of 22 to 280C
without the need for external cooling system even when the initial
temperatures varied over a wide range (15 to 350C). The influent
water conductivity was found to be a significant variable that affect
the temperature. The desirable value of water conductivity is 0.6 S.
However, it was found that the water temperature increased rapidly
with a higher current density.
	%P 964 - 967