WASET
	%0 Journal Article
	%A K. Karuppasamy
	%D 2015
	%J International Journal of Geological and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 105, 2015
	%T Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load
	%U https://publications.waset.org/pdf/10002172
	%V 105
	%X In this paper, analysis of an infinite beam resting on
multilayer tensionless extensible geosynthetic reinforced granular
fill-poor soil system overlying soft soil strata under moving load with
constant velocity is presented. The beam is subjected to a
concentrated load moving with constant velocity. The upper
reinforced granular bed is modeled by a rough membrane embedded
in Pasternak shear layer overlying a series of compressible nonlinear
winkler springs representing the underlying the very poor soil. The
multilayer tensionless extensible geosynthetic layer has been
assumed to deform such that at interface the geosynthetic and the soil
have some deformation. Nonlinear behaviour of granular fill and the
very poor soil has been considered in the analysis by means of
hyperbolic constitutive relationships. Governing differential
equations of the soil foundation system have been obtained and
solved with the help of appropriate boundary conditions. The solution
has been obtained by employing finite difference method by means of
Gauss-Siedal iterative scheme. Detailed parametric study has been
conducted to study the influence of various parameters on the
response of soil–foundation system under consideration by means of
deflection and bending moment in the beam and tension mobilized in
the geosynthetic layer. These parameters include magnitude of
applied load, velocity of load, damping, ultimate resistance of poor
soil and granular fill layer. Range of values of parameters has been
considered as per Indian Railway conditions. This study clearly
observed that the comparisons of multilayer tensionless extensible
geosynthetic reinforcement with poor foundation soil and magnitude
of applied load, relative compressibility of granular fill and ultimate
resistance of poor soil has significant influence on the response of
soil–foundation system.
	%P 1045 - 1057