WASET
	%0 Journal Article
	%A M. Qwamizadeh and  K. Zhou and  Z. Zhang and  YW. Zhang
	%D 2015
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 105, 2015
	%T Dynamic Behavior of the Nanostructure of Load-bearing Biological Materials
	%U https://publications.waset.org/pdf/10002096
	%V 105
	%X Typical load-bearing biological materials like bone,
mineralized tendon and shell, are biocomposites made from both
organic (collagen) and inorganic (biomineral) materials. This
amazing class of materials with intrinsic internally designed
hierarchical structures show superior mechanical properties with
regard to their weak components from which they are formed.
Extensive investigations concentrating on static loading conditions
have been done to study the biological materials failure. However,
most of the damage and failure mechanisms in load-bearing
biological materials will occur whenever their structures are exposed
to dynamic loading conditions. The main question needed to be
answered here is: What is the relation between the layout and
architecture of the load-bearing biological materials and their
dynamic behavior? In this work, a staggered model has been
developed based on the structure of natural materials at nanoscale and
Finite Element Analysis (FEA) has been used to study the dynamic
behavior of the structure of load-bearing biological materials to
answer why the staggered arrangement has been selected by nature to
make the nanocomposite structure of most of the biological materials.
The results showed that the staggered structures will efficiently
attenuate the stress wave rather than the layered structure.
Furthermore, such staggered architecture is effectively in charge of
utilizing the capacity of the biostructure to resist both normal and
shear loads. In this work, the geometrical parameters of the model
like the thickness and aspect ratio of the mineral inclusions selected
from the typical range of the experimentally observed feature sizes
and layout dimensions of the biological materials such as bone and
mineralized tendon. Furthermore, the numerical results validated with
existing theoretical solutions. Findings of the present work emphasize
on the significant effects of dynamic behavior on the natural
evolution of load-bearing biological materials and can help scientists
to design bioinspired materials in the laboratories.
	%P 1589 - 1596