WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10002041,
	  title     = {An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending},
	  author    = {Y. Zheng and  W. Sun},
	  country	= {},
	  institution	= {},
	  abstract     = {This paper describes a new approach which can be
used to interpret the experimental creep deformation data obtained
from miniaturized thin plate bending specimen test to the
corresponding uniaxial data based on an inversed application of the
reference stress method. The geometry of the thin plate is fully
defined by the span of the support, l, the width, b, and the thickness,
d. Firstly, analytical solutions for the steady-state, load-line creep
deformation rate of the thin plates for a Norton’s power law under
plane stress (b→0) and plane strain (b→∞) conditions were obtained,
from which it can be seen that the load-line deformation rate of the
thin plate under plane-stress conditions is much higher than that
under the plane-strain conditions. Since analytical solution is not
available for the plates with random b-values, finite element (FE)
analyses are used to obtain the solutions. Based on the FE results
obtained for various b/l ratios and creep exponent, n, as well as the
analytical solutions under plane stress and plane strain conditions, an
approximate, numerical solutions for the deformation rate are
obtained by curve fitting. Using these solutions, a reference stress
method is utilised to establish the conversion relationships between
the applied load and the equivalent uniaxial stress and between the
creep deformations of thin plate and the equivalent uniaxial creep
strains. Finally, the accuracy of the empirical solution was assessed
by using a set of “theoretical” experimental data.},
	    journal   = {International Journal of Aerospace and Mechanical Engineering},
	  volume    = {9},
	  number    = {7},
	  year      = {2015},
	  pages     = {1294 - 1300},
	  ee        = {https://publications.waset.org/pdf/10002041},
	  url   	= {https://publications.waset.org/vol/103},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 103, 2015},
	}