WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10001940,
	  title     = {Water Quality Trading with Equitable Total Maximum Daily Loads},
	  author    = {S. Jamshidi and  E. Feizi Ashtiani and  M. Ardestani},
	  country	= {},
	  institution	= {},
	  abstract     = {Waste Load Allocation (WLA) strategies usually
intend to find economic policies for water resource management.
Water quality trading (WQT) is an approach that uses discharge
permit market to reduce total environmental protection costs. This
primarily requires assigning discharge limits known as total
maximum daily loads (TMDLs). These are determined by monitoring
organizations with respect to the receiving water quality and
remediation capabilities. The purpose of this study is to compare two
approaches of TMDL assignment for WQT policy in small catchment
area of Haraz River, in north of Iran. At first, TMDLs are assigned
uniformly for the whole point sources to keep the concentrations of
BOD and dissolved oxygen (DO) at the standard level at checkpoint
(terminus point). This was simply simulated and controlled by
Qual2kw software. In the second scenario, TMDLs are assigned
using multi objective particle swarm optimization (MOPSO) method
in which the environmental violation at river basin and total treatment
costs are minimized simultaneously. In both scenarios, the equity
index and the WLA based on trading discharge permits (TDP) are
calculated. The comparative results showed that using economically
optimized TMDLs (2nd scenario) has slightly more cost savings rather
than uniform TMDL approach (1st scenario). The former annually
costs about 1 M$ while the latter is 1.15 M$. WQT can decrease
these annual costs to 0.9 and 1.1 M$, respectively. In other word,
these approaches may save 35 and 45% economically in comparison
with command and control policy. It means that using multi objective
decision support systems (DSS) may find more economical WLA,
however its outcome is not necessarily significant in comparison with
uniform TMDLs. This may be due to the similar impact factors of
dischargers in small catchments. Conversely, using uniform TMDLs
for WQT brings more equity that makes stakeholders not feel that
much envious of difference between TMDL and WQT allocation. In
addition, for this case, determination of TMDLs uniformly would be
much easier for monitoring. Consequently, uniform TMDL for TDP
market is recommended as a sustainable approach. However,
economical TMDLs can be used for larger watersheds.},
	    journal   = {International Journal of Computer and Systems Engineering},
	  volume    = {9},
	  number    = {6},
	  year      = {2015},
	  pages     = {745 - 749},
	  ee        = {https://publications.waset.org/pdf/10001940},
	  url   	= {https://publications.waset.org/vol/102},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 102, 2015},
	}