WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10001923,
	  title     = {Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM},
	  author    = {Teerapon Pirom and  Ura Pancharoen},
	  country	= {},
	  institution	= {},
	  abstract     = {Amoxicillin is an antibiotic which is widely used to
treat various infections in both human beings and animals. However,
when amoxicillin is released into the environment, it is a major
problem. Amoxicillin causes bacterial resistance to these drugs and
failure of treatment with antibiotics. Liquid membrane is of great
interest as a promising method for the separation and recovery of the
target ions from aqueous solutions due to the use of carriers for the
transport mechanism, resulting in highly selectivity and rapid
transportation of the desired metal ions. The simultaneous processes
of extraction and stripping in a single unit operation of liquid
membrane system are very interesting. Therefore, it is practical to
apply liquid membrane, particularly the HFSLM for industrial
applications as HFSLM is proved to be a separation process with
lower capital and operating costs, low energy and extractant with
long life time, high selectivity and high fluxes compared with solid
membranes. It is a simple design amenable to scaling up for industrial
applications. The extraction and recovery for (Amoxicillin) through
the hollow fiber supported liquid membrane (HFSLM) using
aliquat336 as a carrier were explored with the experimental data. The
important variables affecting on transport of amoxicillin viz.
extractant concentration and operating time were investigated. The
highest AMOX- extraction percentages of 85.35 and Amoxicillin
stripping of 80.04 were achieved with the best condition at 6 mmol/L
[aliquat336] and operating time 100 min. The extraction reaction
order (n) and the extraction reaction rate constant (kf) were found to
be 1.00 and 0.0344 min-1, respectively.},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {9},
	  number    = {6},
	  year      = {2015},
	  pages     = {715 - 718},
	  ee        = {https://publications.waset.org/pdf/10001923},
	  url   	= {https://publications.waset.org/vol/102},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 102, 2015},
	}