Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka-Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as biomedical engineering. Selfassembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as microstructure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: Bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107435

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790

References:


[1] K. Cieślik, W. Witkowski, J. Drukała, A. Waligórska, J. Puchała, “Biotechnological dressings and living skin substitutes- overview and current applicability,” (in polish) Leczenie Ran,vol. 2(3), 2005, pp. 71- 83.
[2] M. P. Lutolf, P.M. Gilbert, H. M. Blau, “Designing materials to direct stem-cell fate,” Nature, vol. 462(7272), 2009, pp. 433–441.
[3] D.T. Scadden, “The stem-cell niche as an entity of action,” Nature, vol. 441(7097), 2006, pp. 1075–1079.
[4] D.L. Jones, A.J. Wager, “No place like home: anatomy and function of the stem cell niche,” Nat Rev Mol Cell Biol, vol. 9(1), 2008, pp. 11–21.
[5] E. Fuchs, T. Tumbar, G. Guasch, “Socializing with the neighbors: stem cells and their niche,” Cell, vol. 116(6), 2004, pp. 769–778.
[6] R. Schofield, “The relationship between the spleen colony-forming cell and the haemopoietic stem cell,” Blood Cells, vol. 4(1–2), 1978, pp. 7– 25.
[7] D. Nie, “Cancer stem cell and niche,” Front Biosci, vol. 2 (1), 2010, pp. 184–193.
[8] F.J. King , H. Lin, “Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis,” Development, vol. 126(9), 1999, pp. 1833–1844.
[9] T. Xie, A.C. Spradling, “A niche maintaining germ line stem cells in the Drosophila ovary,” Science, vol. 290(5490), 2000, pp. 328–330.
[10] T. Tumbar, G. Guasch, V. Greco, C. Blanpai, W. E. Lowry, M. Rendl, E. Fuchs, “Defining the epithelial stem cell niche in skin,” Science, vol. 303(5656), 2004, pp. 359–363.
[11] T. H. Yen, N. A. Wright, “The gastrointestinal tract stem cell niche,“ Stem Cell Rev, vol. 2(3), 2006, pp. 203–212.
[12] J.C. Conover, R.Q. Notti, “The neural stem cell niche,“Cell Tissue Res, vol. 331(1), 2008, pp. 211–224.
[13] T. A. Mitsiadis, O. Barrandon, A. Rochat, Y. Barrandon, C. De Bari, “Stem cell niches in mammals,” Exp Cell Res, vol. 313(16), 2007, pp. 3377–3385.
[14] H. Ohshima, N. Nakasone, E. Hashimoto, H. Sakai, K. Nakakura- Ohshima, H. Harada, “The eternal tooth germ is formed at the apical end of continuously growing teeth,” Arch Oral Biol, vol. 50(2), 2005, pp. 153–157.
[15] A. Wilson, A. Trumpp,“Bone-marrow haematopoietic-stem-cell niches,“ Nat Rev Immunol, vol. 6(2), 2006, pp. 93–10
[16] C. Chai, K.W. Leong, “Biomaterials approach to expand and direct differentiation of stem cells,” Mol Ther, vol. 15, 2007, pp. 467–480.
[17] K. Saha, J.F. Pollock, D.V. Schaffer, K. E. Healy, “Designing synthetic materials to control stem cell phenotype,“ Curr Opin Chem Biol, vol. 11, 2007, pp. 381–387.
[18] N. S. Hwang, S. Varghese, J. Elisseeff, “Controlled differentiation of stem cells,” Adv Drug Deliv Rev, vol. 60, 2008, pp. 199–214.
[19] E. Dawson, G. Mapili, K. Erickson, S. Taqvi, K. Roy, “Biomaterials for stem cell differentiation,” Adv Drug Deliv Rev, vol. 60, 2008, pp. 215– 228.
[20] S.M. Dellatore, A.S. Garcia, W. M. Miller, “Mimicking stem cell niches to increase stem cell expansion,” Curr Opin Biotechnol, vol. 19, 2008, pp. 534–540.
[21] N. Evans, E. Gentelman, J. Polak, “Scaffolds for stem cells,” Materials Today, vol. 9(12), 2006, pp. 26–33.
[22] A. Laha, S. Bhattacharyya, S.B. Krupanidhi, “Impact of microstructure on dielectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films,” Mater. Sci. Eng. B, vol. 106, 2004, pp. 111–119.
[23] J. A. Thornton, “High rate thick film growth,” Ann. Res. Mat. Sci, vol. 7, 1977, pp. 239-260.
[24] J. M. Lackner, “Industrially-styled room-temperature pulsed laser deposition of titanium-based coatings,” Vacuum, vol. 78, 2005, pp. 73– 82.
[25] K. Mylvaganam, L. C. Zhang, “Residual stress induced atomic scale buckling of diamond carbon coatings on silicon substrate,“ Thin Solid Films, vol. 425, 2003, pp. 145–149.
[26] J. M. Lackner, W. Waldhauser, R. Major, B. Major, F. Bruckert, “Hemocompatible, pulsed laser deposited coatings on polymers,” Biomedizinische Technik, vol. 55 (1), 2010, pp. 57- 64.
[27] N. D. Evans, C. Minelli, E. Gentleman, V. La Pointe, S. N. Patankar, M. Kallivretaki, X. Chen, C. J. Roberts, M. M. Stevens,” Substrate stiffness affects early differentiation events in embryonic stem cells,“ NEDur oEpveaanns Cete lalls. and Materials, vol. 18, 2009, pp. 1- 14.
[28] L. Linheng, T. Xie, “Stem cell niche: structure and function,” Annual review of cell and developmental biology, vol. 21, 2005, pp. 605-631.
[29] M. V. Gomez-Gaviro, R. Lovell-Badge, F. Fernandez-Aviles, E. Lara- Pezzi, “The Vascular Stem Cell Niche,” J. of Cardiovasc. Trans. Res, vol. 5, 2012, pp. 618-630.
[30] S. Chen, M. Lewallen, T. Xie, “Adhesion in stem cell niche: biological roles and regulation,” Develop., vol. 140(2), 2013, pp. 255-65.
[31] E. Fuchs, T. Tumbar, G. Guasch, “Socializing with the neighbors: stem cells and their niche,“ Cell, vol. 116(6), 2004, pp. 769–778.
[32] K. A. Moore, I. R. Lemischka,“Stem cells and their niches,” Science, vol. 311(5769), 2006, pp. 1880–1885.0
[33] T. M. Farooque, Ch. H. J. Camp, Ch. K. Tison, G. Kumar, S. H. Parekh, C. G. Jr Simon,“Measuring stem cell dimensionality in tissue scaffolds,” Biomaterials, vol. 35, 2014, pp. 2558-2567.
[34] L. A. Turner, M. J. Dalby, “Nanotopography – potential relevance in the stem cell niche,” Biomater. Sci, vol. 2, 2014, pp. 1574-1594.
[35] J. M. Anderson, J. Schoen, “In vivo assessment of tissue compatibility,” in An introduction to materials in medicine, 2nd ed. B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, San Diego: Elsevier Academic Press, 2004, pp. 360–366.
[36] M. Sanak, B. Jakiela, W. Wegrzyn, “Assessment of hemocompatibility of materials with arterial blood flow by platelet functional tests,” Bull. Polish Acad. of Sci.: Tech. Sci., vol. 58(2), 2010, pp. 317–322.
[37] U. T. Seyfert, V. Biehl, J. Schenk, “In vitro hemocompatibility testing of biomaterials according to the ISO 10993_4,” Biomol. Eng., vol. 19, 2002, pp. 91–96.
[38] J. M. Lackner, P. Wilczek, M. Sanak, B. Jakiela, B. Stolarzewicz, M. Kowalczuk, M. Sobota, K. Maksymow, M. Spisak, B. Major, “Functional cardio-biomaterials,” Advances in Materials Science, vol.11(2), 2011, pp. 5–25.
[39] R. Major, “Self-assembling surfaces of blood-contacting materials,” J. Mater. Sci-Mater. M., vol. 24, 2013, pp. 725-733.
[40] R. Dardik, N. Savion, N. Gal, D. Varon, “Flow conditions modulate homocysteine induced changes in the expression of endothelial cell genes associated with cell-cell interaction and cytoskeletal rearrangement,“ Thromb. and Haemostasis, vol. 88, 2002, pp. 1047– 1053.
[41] Y. Germanier, S. Tosatti, N. Broggini, M. Textor, D. Buser, “Enhanced bone apposition around biofunctionalized sandblasted and acidetched titanium implant surfaces. A histomorphometric study in miniature pigs,” Clin Oral Impl Res., vol. 17, 2006, pp. 251–257.
[42] B. Shenkman, A. Inbal, I. Tamarin, A. Lubetsky, N. Savion, D. Varon, “Diagnosis of thrombotic thrombocytopenic purpura based on modulation by patient plasma of normal platelet adhesion under flow condition,“ Br. J. Haematol., vol. 120, 2003, pp. 597–604.
[43] X. Wang, R. T. Dorsam, A. Lauver, H. Wang, F. A. Barbera, S. Gibbs, D. Varon, N. Savion, S. M. Friedman, G.Z. Feuerstein, “Comparative analysis of various platelet glycoprotein IIb/IIIa antagonists on shearinduced platelet activation and adhesion,” J. Pharmacol. Exp. Ther., vol. 303(3), 2002, pp. 1114–1120.
[44] Y. M. Yamashita, “Cell adhesion in regulation of asymmetric stem cell division,“ Curr. Opin. Cell Biol., vol. 22, 2010, pp. 605-610.
[45] N. A. Peppas, “Hydrogels in Medicine and Pharmacy,” CRC Press 1987.
[46] A. S. Hickey, N. A. Peppas, “Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing technique,” J. Membrane Sci., vol. 107, 1995, pp. 229- 237.
[47] K. Kazmierska, K. Kuc, T. Ciach, “Polyvinylpyrrolidone-Polyurethane Interpolymer Hydrogel Coating as a Local Drug Delivery System,” Acta Pol. Pharm. - Drug Res., vol. 65(6), 2008, pp. 763-766.
[48] P. C. Nicolson, J. Vogh,“Soft contact lens polymers: an evolution,” Biomaterials, vol. 22, 2001, pp. 3273–83.