Characterization of the Dispersion Phenomenon in an Optical Biosensor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32827
Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107035

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999

References:


[1] R. Narayanaswamy, O. S. Wolfbeis, Optical Sensors, Springer, New York, 2004
[2] D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, H. S. Sorensen, Free-solution label-free molecular interactions studied by back-scattering interfometry, Science 317 (2007) 1732–1736.
[3] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, W. W. Web, Zeromode waveguides for single-molecule analysis at high concentrations, Science 299 (2003) 682–686.
[4] Y. Lin, F. Lu, Y. Tu, Z. Ren, Glucose biosensor based on carbon nanotube nanoelectrode ensembles, Nano Letters 4 (2004) 191–195.
[5] C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors, Chemical Reviews 108 (2008) 400–422
[6] J. Wang, Electrochemical glucose biosensors, Chemical Reviews 108 (2008)814–825.
[7] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, Y. Sun, Sensitive optical biosensor for unlabeled targets: a review, Analytica Chimica Acta 620 (2008)8–26.
[8] F. Vollmer, S. Arnold, Whispering-gallery-mode biosensing: laber-free detection down to single molecules, Nature Methods 5 (2008) 591–596.
[9] V. Goral et al, Label-free optical biosensor with microfluidics for sensing ligand-directed functional selectivity on trafficking of thrombin receptor, FEBS Letters 585 (2011) 1054–1060
[10] T. Kumeria et al, Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells Biosensors and Bioelectronics 35 (2012) 167-173.
[11] X. Xu et al, A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods, Biosensors and Bioelectronics 47 (2013) 361–367.
[12] L. Zhian et al Label-free biosensor by protein grating coupler on planar optical waveguides, optics letters Vol. 33, No. 15
[13] Robert Horvath et al, Grating coupled optical waveguide interferometer for label-free biosensing, Sensors and Actuators B 155 (2011) 446–450
[14] M. Matlosz et al. Micro channel reactors for kinetic measurement: Influence of diffusion and dispersion on experimental accuracy, Microreaction Technology
[15] N. Orgovan et al, In-situ and label-free optical monitoring of the adhesion and spreading of primary monocytes isolated from human blood: Dependence on serum concentration levels, Biosensors and Bioelectronics 54 (2014) 339–344
[16] J. Vlachopoulos et al, Polymer processing, Mater. Sci. Technol. Lond., 19 (2003), pp. 1161–1169
[17] S. H. Kim et al, Nanopattern insert molding, Nanotechnology 21(2010)
[18] R. R. Lamonte, D. McNally, Cyclic olefin copolymers, Adv. Mater. Process. 159 (2001)33–36.
[19] AWK. Law, H. Wang, Measurement of mixing processes with combined digital particle image velocimetry and planner laser induced fluorescence, Exp. Therm Fluid Sci. 22 (2000) 213-229.
[20] ANSYS/FLUENT, version 13 User guide manual, ANSYS Inc., Canonsburg, PA, USA, 2010 (Website: www.ansys.com).
[21] A. A. S. Bhagat, E. T. K. Peterson, I. Papautsky, A passive planar micro-mixer with obstructions for mixing at low Reynolds numbers, J. Micromech. Microeng. 17 (2007) 1017- 1024.
[22] J. P. Van Doormaal, G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transfer 7 (1984) 147-163.
[23] D. S. Jang, R. Jetli, S. Acharya, Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems, Numer Heat Tran. 10 (1986) 209-228.