Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature

Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby

Abstract:

Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2- xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law. The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.

Keywords: Dielectric ceramics, Dielectric constant, Loss tangent, AC conductivity, Impedance spectroscopy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338293

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469

References:


[1] D. Berlincourt, J.Acoust. Soc. Am., 1992, vol. 91, pp. 3034-3040.
[2] F. Zimmermann, M. Voigts, W. Menesklou and E.I. Tiffee, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1729-1733.
[3] A. Tkach and P.M. Vilarinho, Bol. Soc. Esp. ceram., 2008, vol. 47, pp. 238-241.
[4] S. Bindra Narang, D. Kaur, K.S. Thind, J. Ceram.Process. Res., 2005, vol. 7(1), pp. 31-36.
[5] O. P. Thakur, C. Parkash, D. K. Aggarwal, J. Ceram. Process. Res., 2002, vol. 3(2), pp. 75-79.
[6] M. Aparna, T. Bhimasankaram, S. V. Suryanarayana, G. Prasad and G.S. Kumar, Bull. Mater. Sci., 2001, vol. 24, pp. 497-504.
[7] S. Bindra Narang, D. Kaur D and K.S. Thind, J. Ceram. Process. Res., 2009, vol. 10(5), pp. 595-599.
[8] S. BindraNarang, D. Kaur and K. Singh, Ceram. Int., 2007, vol. 33(2), pp. 249-253.
[9] S. Bindra Narang, D. Kaur and S. Bahel, Mate. Lett., 2006, vol. 60, pp. 3179-3182.
[10] A.K. Bansal, P.J. Singh, K.S. Sharma, J. Pure Ap.Phy., 2001, vol.39, pp. 799-803.
[11] S.O. Nelson, Bull. Entomol. Soc. Am., 1993, vol. 19(3), pp 157-163.
[12] N.K. Singh, Pritam Kumar, A. Kumar and S. Sharma, J.Engg.Tech. Res., 2012, vol. 4(6), pp 104-113.
[13] Makram Megdiche, Carine Perrin-pellegrino and Mohamed Gargouri, J. Alloys Compd., 2014, vol.584, pp.209-215.
[14] H.V. Alexandru, C. Berbecaru, A. Ioachim, M.I. Toascsen, L. Nedelcu and D. Ghetu, Mater. Sci.Engg. B, 2004, vol.109, pp.152-159.
[15] H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya and S. Suzuki, Jpn. J. Appl. Phys., 1993, vol.32, pp.4323-4326.
[16] Sujoy Saha, Sadhan Chanda, Alo Dutta and T.P. Sinha, Mater. Res. Bull., 2013, vol.48, pp.4917-4923.
[17] S. Bindra Narang and D. Kaur, Integr. Ferroelectr., 2009, vol.105(1), pp.87-88.
[18] E. Buixaderas, D. Nuzhnyy,P. Vanek, I. Gragora, J. Petzelt,V. Porokhonskyy, L. Jin, D. Damjanovic, Phase. Transit., 2010, vol.83 (10- 11), pp. 917.
[19] C. Machhi, A. Samoza, A. Dupasquier, A. Lopez andM. Castro, J. Phys.: Condens. Matter., 2001, vol.13, pp. 5717.
[20] N.S. Hari, T. R. N. Kutty, J. Mater. Sci., 1998, vol.33, pp3275.
[21] R.K. Dwivedi, D. Kumar,O. Parkash, J. Mater. Sci., 2001, vol.36, pp.3641.
[22] I. Burn, J. Neirman, Mater. Sci.1982, vol.17, pp. 3510.
[23] Yin-Lai Chai, Chi-Shiung His, Yiu-Tingand Lin and Yee-Shin Chang, J. Alloys Compd., 2014, vol. 588, pp. 248-253.
[24] H. Ohsato, J. Euro.Ceram. Soc., 2001, vol.21, pp. 2703-2711.
[25] H. Ohsato, J. Ceram. Soc.Jpn., 2005, vol.113(11), pp. 703-711.
[26] M.T. Sabestian, Dielectric Materials for Wireless Communication, Elsevier, New York, 2008.
[27] H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater., 2007, vol. 316, pp. 23.
[28] S. Khadhraoui, A. Triki, S. Hcini, S. Zemni and M. Oumezzine, J. Alloys Compd., 2013, vol. 574, pp. 290-298.
[29] K. Srinivas, P. Sarah, S.V. Suryanarayana, Bull. Mater. Sci., 2013, vol. 26(2), pp. 247-253.
[30] M. Pollak, in: Proceedings of the International Conference on Physics of Semiconductors, Exeter, 1962 pp. 86.
[31] S.K. Rout, Ali Hussain, J.S. Lee, I.W. Kim, S.I. Woo, J. Alloys Compd., 2009, vol. 477, pp. 706-711.
[32] A.K. Jonescher, Nature, 1977, vol. 267, pp. 673-679.
[33] A. K. Jonescher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London 1983.
[34] A.K. Jonescher, Universal Relaxation Law, Chelsea Dielectric Press, London 1996.
[35] N. Zidi, A. Chaouchi, S. d’Astorg, M. Rguti, C. Courtois, J. Alloys Compd.,2014, vol. 590, pp. 557-564.
[36] N.K. Singh, Pritam Kumar, Radheshyam Rai, Anderi L. Kholkin, Adv. Mater. Lett., 2012, vol. 3(4), pp. 315-320.
[37] J.R. Macdonald, Impedance spectroscopy emphasizing solid materials and system, Wiley, New York, 1987.
[38] Paramjeet Singh, Asish Agarwal, Sujata Sanghi, Navneet Singh and Satish Khasa, Physica B, 2014, vol. 436,pp. 64-73.