WASET
	%0 Journal Article
	%A Juliana A. Galhardi and  Daniel M. Bonotto
	%D 2015
	%J International Journal of Geological and Environmental Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 101, 2015
	%T Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil
	%U https://publications.waset.org/pdf/10001339
	%V 101
	%X Coal is an important non-renewable energy source of
and can be associated with radioactive elements. In Figueira city,
Paraná state, Brazil, it was recorded high uranium activity near the
coal mine that supplies a local thermoelectric power plant. In this
context, the radon activity (Rn-222, produced by the Ra-226 decay in
the U-238 natural series) was evaluated in groundwater, river water
and effluents produced from the acid mine drainage in the coal reject
dumps. The samples were collected in August 2013 and in February
2014 and analyzed at LABIDRO (Laboratory of Isotope and
Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha
spectrometer (AlphaGuard) adjusted to evaluate the mean radon
activity concentration in five cycles of 10 minutes. No radon activity
concentration above 100 Bq.L-1, which was a previous critic value
established by the World Health Organization. The average radon
activity concentration in groundwater was higher than in surface
water and in effluent samples, possibly due to the accumulation of
uranium and radium in the aquifer layers that favors the radon
trapping. The lower value in the river waters can indicate dilution and
the intermediate value in the effluents may indicate radon absorption
in the coal particles of the reject dumps. The results also indicate that
the radon activities in the effluents increase with the sample
acidification, possibly due to the higher radium leaching and the
subsequent radon transport to the drainage flow. The water samples
of Laranjinha River and Ribeirão das Pedras stream, which,
respectively, supply Figueira city and receive the mining effluent,
exhibited higher pH values upstream the mine, reflecting the acid
mine drainage discharge. The radionuclides transport indicates the
importance of monitoring their activity concentration in natural
waters due to the risks that the radioactivity can represent to human
health.
	%P 521 - 528