F-IVT Actuation System to Power Artificial Knee Joint
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of exoskeletons and active orthoses for lower limbs is a significant aspect of the design of such devices because it affects their efficacy. The F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated that the F-IVT is still an advantageous actuator which permits to save energy consumption and to downsize the electric motor even when it does not work in nominal conditions.

Keywords: Active orthoses, actuators, lower extremity exoskeletons, knee joint.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100897

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404

References:


[1] C. T. Farley, D. P. Ferris, 1998, "10 Biomechanics of Walking and Running: Center of Mass Movements to Muscle Action. Exercise and sport sciences reviews", 26(1): pp. 253-286. DOI: 10.1249/00003677- 199800260-00012.
[2] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr, 2006, "Development of a Lightweight, Underactuated Exoskeleton for Load-Carrying Augmentation", IEEE International Conference on Robotics and Automation, ICRA, IEEE, pp. 3485–3491, DOI: 10.1109/ROBOT.2006.1642234.
[3] L. Mooney, H. Herr, 2013, "Continuously-Variable Series-Elastic Actuator", IEEE International Conference on Rehabilitation Robotics, IEEE, pp. 1-6, DOI: 10.1109/ICORR.2013.6650402.
[4] W. K. Durfee, A. Rivard, 2005, "Design and Simulation of a Pneumatic, Stored-Energy, Hybrid Orthosis for Gait Restoration", Journal of Biomechanical Engineering, 127(6): pp. 1014-1019. DOI: 10.1115/1.2050652.
[5] A. J. van den Bogert, S. Samorezov, B. L. Davis, W. A. Smith, 2012, "Modeling and optimal Control of an Energy-Storing Prosthetic Knee", Journal of biomechanical engineering, 134(5), DOI:10.1115/1.4006680.
[6] A. M. Dollar, H. Herr, 2008, "Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-art", IEEE Transactions on Robotics, 24(1), pp. 144-158. DOI: 10.1109/TRO.2008.915453.
[7] M. Grimmer, M. Eslamy, A. Seyfarth, 2014, "Energetic and Peak Power Advantages of Series Elastic Actuators in an Actuated Prosthetic Leg for Walking and Running", Actuators, 3(1), pp. 1-19. DOI: 10.3390/act3010001.
[8] H. Kawamoto, Y. Sankai, 2002, "Power Assist System HAL-3 for Gait Disorder Person", In Computers Helping People With Special Needs, Springer Berlin Heidelberg, 2398, pp. 196-203. DOI: 0.1007/3-540- 45491-8_43.
[9] J. E. Pratt, B. T. C. J. Krupp, Morse, S. H. Collins, 2004, "The RoboKnee: an Exoskeleton for Enhancing Strength and Endurance During Walking". IEEE International Conference on Robotics and Automation, ICRA, IEEE, 3, pp. 2430-2435. DOI: 10.1109/ROBOT.2004.1307425.
[10] A. Zoss, H. Kazerooni, 2006, "Design of an Electrically Actuated Lower Extremity Exoskeleton", Advanced Robotics, 20(9), pp. 967-988. DOI: 10.1163/156855306778394030.
[11] D. F. B. Haeufle, M. D. Taylor, S. Schmitt, H. Geyer, 2012, "A Clutched Parallel Elastic Actuator Concept: Towards Energy Efficient Powered Legs in Prosthetics and Robotics", Proc. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 1614-1619, DOI: 0.1109/BioRob.2012.6290722.
[12] V. Luciano, E. Sardini, M. Serpelloni, G. Baronio, 2012, "Analysis of an Electromechanical Generator Implanted in a Human Total Knee Prosthesis", In Sensors Applications Symposium (SAS), IEEE, pp. 1-5, DOI: 10.1109/SAS.2012.6166273.
[13] J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, and A. D. Kuo, 2008, "Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort", Science, 319(.5864): 807- 810. DOI: 10.1126/science.1149860.
[14] B. J. Bergelin, J. O. Mattos, J. G. Wells, P. A. Voglewede, 2010 "Concept Through Preliminary Bench Testing of a Powered Lower Limb Prosthetic Device", Journal of mechanisms and robotics, 2(4), 041005 (9 pages), DOI: :10.1115/1.400220.
[15] J. Borràs, A. M. Dollar, 2014, "Actuation Torque Reduction in Parallel Robots Using Joint Compliance". Journal of Mechanisms and Robotics, 6(2), 021006 (11 pages), DOI: 10.1115/1.4026628.
[16] M. Hutter, C. D. Remy, M. A. Hoepflinger, R. Siegwart, 2011, "High Compliant Series Elastic Actuation for the Robotic Leg ScarlETH", N°. EPFL-CONF-175826, In Proc. of the International Conference on Climbing and Walking Robots (CLAWAR), Eidgenössische Technische Hochschule Zürich, Autonomous Systems Lab, Zürich, DOI: http://dx.doi.org/10.3929/ethz-a-010025741.
[17] C. Lagoda, A. C. Schouten, A. H. Stienen, E. E. Hekman, H. van der Kooij, 2010, "Design of an Electric Series Elastic Actuated Joint for Robotic Gait Rehabilitation Training", In 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 21-26. DOI: 10.1109/BIOROB.2010.5626010.
[18] F. Sergi, D. Accoto, G. Carpino, N. L. Tagliamonte, E. Guglielmelli, 2012, "Design and Characterization of a Compact Rotary Series Elastic Actuator for Knee Assistance during Overground Walking", In 4th IEEE RAS & EMBS International Conference on: Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 1931-1936. DOI: 10.1109/BioRob.2012.6290271.
[19] J. F. Veneman, R. Ekkelenkamp, R. Kruidhof, F. C. van der Helm, H. van der Kooij, 2006, "A Series Elastic-and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots", The international journal of robotics research, 25(3): pp. 261- 281. DOI: 10.1109/ICORR.2005.1501150.
[20] K. Bharadwaj, T. G. Sugar, J. B. Koeneman, E. J. Koeneman, 2005, "Design Of A Robotic Gait Trainer Using Spring Over Muscle Actuators for Ankle Stroke Rehabilitation", Journal of Biomechanical Engineering, 127(6): pp. 1009-1013. DOI: 10.1115/1.2049333.
[21] D. Accoto, G. Carpino, F. Sergi, N. L. Tagliamonte, L. Zollo, E. Guglielmelli, "Design and Characterization of a Novel High-Power Series Elastic Actuator for a Lower Limb Robotic Orthosis", Int J Adv Robot Syst, 2013, 10(359), pp. 1-12. DOI: 5772/56927.
[22] D. Paluska, H. Herr, 2006, "The Effect of Series Elasticity on Actuator Power and Work Output: Implications for Robotic and Prosthetic Joint Design", Robotics and Autonomous Systems, 54(8), pp: 667-673. DOI: 10.1016/j.robot.2006.02.013.
[23] K. W. Hollander, R. Ilg, T. G. Sugar, D. Herring, 2006, "An Efficient Robotic Tendon for Gait Assistance", Journal of Biomechanical Engineering, 128(5), pp: 788-791. DOI: 10.1115/1.2264391.
[24] G. A. Pratt, M. M. Williamson, 1995, "Series Elastic Actuators", Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, ’Human Robot Interaction and Cooperative Robots’, 1, pp. 399- 406. DOI: 10.1109/IROS.1995.525827.
[25] E. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, H. M. Herr, 2013, "Clutchable Series-Elastic Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption", In IEEE International Conference on Rehabilitation Robotics (ICORR), IEEE, pp. 1-6, DOI: 10.1109/ICORR.2013.6650383.
[26] K. Endo, D. Paluska, H. Herr, 2006, "A Quasi-Passive Model of Human Leg Function in Level-Ground Walking", In IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 4935-4939, DOI: 10.1109/IROS.2006.282454.
[27] R. Alò, F. Bottiglione, G. Mantriota, "An Innovative Design of Artificial Knee Joint Actuator with Energy Recovery Capabilities", 2015, Journal of Mechanisms and Robotics, DOI: 10.1115/1.4030056.
[28] F. Bottiglione, G. Mantriota 2013, "Effect of the Ratio Spread of CVU in Automotive Kinetic Energy Recovery Systems", ASME Journal of Mechanica Design, 135(6), 061001 (9 pages), DOI: 10.1115/1.4024121.
[29] L. Mangialardi, G. Mantriota, 1996, "Dynamic Behaviour of Wind Power Systems Equipped with Automatically Regulated Continuously Variable Transmission", Renewable Energy, An International Journal. 7(2), pp. 185-203. DOI: 10.1016/0960-1481(95)00125-5.
[30] G. Carbone, L. Mangialardi, G. Mantriota, 2004, "A Comparison of the Performance of Full and Half Toroidal Traction Drives", Mechanism and Machine Theory, 39, pp. 921-942, DOI: 10.1016/j.mechmachtheory.2004.04.003.
[31] G. Mantriota, 2005, "Fuel Consumption of a Vehicle with Power Split CVT System", International Journal of Vehicle Design, 37(4), pp. 327- 342, DOI: 10.1504/IJVD.2005.006598.
[32] L. G. Brown, G. A. Brown, B. A. Brown, 2013, "Locked Contact Infinitely Variable Transmission". Patent n. US8419589 B1.
[33] C. J. Greenwood, A. D. De Freitas, A. R. Oliver, 2011, "Drive mechanism for Infinitely Variable Transmission". Patent n. US7955210 B2.
[34] K. Kazerounian, Z. Furu-Szekely, 2006, "Parallel Disk Continuously Variable Transmission (PDCVT)", Mechanism and machine theory, 41(5), pp: 537-566. DOI: 10.1016/j.mechmachtheory.2005.07.007.
[35] C. B. Lohr, J. W. Sherrill, B. P. Pohl, R. Dawson, C. Pew, 2014, "Infinitely Variable Transmissions, Continuously Variable Transmissions, Methods, Assemblies, Subassemblies, and Components Therefor", Patent n. US8721485 B2.
[36] M. Douglas, 2010, Infinitely Variable Transmission, Patent n. US7704184 B2.
[37] F. Bottiglione, G. Mantriota, 2011, "Reversibility of Power-Split transmissions", ASME Journal of Mechanical Design, 133(8), 08450 (5 pages), DOI: 10.1115/1.4004586.
[38] L. Mangialardi, G. Mantriota, 1999, "Power Flows and Efficiency in Infinitely Variable Transmissions", Mechanism and Machine Theory. 34(7), pp. 973-994, DOI: 10.1016/S0094-114X(98)00089-5.
[39] G. Mantriota, 2002, "Performances of a parallel infinitely variable transmission with a Type II Power Flow", Mechanism and Machine Theory. 37(6), pp. 555-578, DOI: 10.1016/S0094-114X(02)00018-6.
[40] G. Mantriota, 2002, "Performances of a series Infinitely Variable Transmission with a Type I Power Flow", Mechanism and Machine Theory, 37(6), pp. 579-597, DOI: 10.1016/S0094-114X(02)00017-4.
[41] I. Schafer, P. Bourlier, F. Hantschack, E. W. Roberts, S. D. Lewis, D. J. Forster, C. John, 2005, "Space Lubrication and Performance of Harmonic Drive Gears", In Proceedings of the 11th ESMATS Symposium, pp. 65-72.