Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys

Authors: M. Nazmunnahar, J. J. Del Val, A. Vimmrova, J. González

Abstract:

We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms=336K, Mf=328K, As=335K and Af=343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207 K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms.

Keywords: Structural transformation, as-cast ribbon, Heusler alloys, Magnetic properties.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1338263

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2560

References:


[1] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 439(2006) 957-960.
[2] H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov, H. J. Maier, Acta materialia 54(2006) 233-245.
[3] R. Kainuma, Y. Imano, W. Ilto, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, K. Oikawa, T. Kanomata, Appl. Phys. Lett. 88 (2006)192513.
[4] Wu. Wang, Jinke Yu, Qijie Zhai, Zhiping Luo, Hongxing Zheng; J. Magne. and Magne. Materials 346(2013) 103-106.
[5] T. Krenke, E. Duman, M. Acet, E. F. Waserman, X. Moya, L. Manosa, A, Planes, Nat. Mater.4(2005)450
[6] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 72(2005) 014412.
[7] Y. B. Yang, X. B. Ma, X. G. Chen, J. Z. Wei, R. Wu, J. Z. Han, H. L. Du, C. S. Wang, S. Q. Liu, Y. C. Yang, Y. Zhang, J. B. Yang, J. Appl. Phys. 111(2012) 07A916.
[8] E. C. Passamani, V. P. Nascimento, C. Larica, A. Y. Takeuchi, A. L. Alves, J. R. Provetib, M. C. Pereirac, J. D. Fabrisd, J. Alloys Compd. 509(2011) 7826.
[9] T. L. Phan, N. H. Duc, N. H. Yen, P. T. Thanh, N. H. Dan, P. Zhang, S. C. Yu, IEEE Trans. Magn. 48(2012) 1381.
[10] A. Planes, L. Mañosa, M. Acet. J. Phys.: Condens. Matter. 21, (2009) 233201.
[11] D. Y. Cong, S. Roth, M. Pötschke, C. Hürrich, L. Schultz, Appl. Phys. Lett. 97, (2010) 021908.
[12] A. Planes, Physics 3, (2010)36.
[13] T. Krenke, E. Duman, M. Acet, X. Moya, L. Mañosa, A. Planes, J. Appl. Phys. 102 (2007) 033903.
[14] R. Y. Umetsu, A. Fujita, W. Ito, T. Kanomata, R. Kainuma, J. Phys. Conden. Matter 23 (2011) 326001.
[15] Z. Zhong, S. Ma, D. Wang, Y. Du, J. Mater. Sci. Technol 28 (2012) 193
[16] V. Basso, C. P. Sasso, K. P. Skokov, O. Gutfleisch, V. V. Khovaylo, Phys. Rev. B85 (2012) 014430.
[17] B. Hernando, J. L. Sánchez Llamazares, J. D. Santos, V. M. Prida, D. Baldomir, D. Serantes, R. Varga, J. González, Appl. Phys. Lett. 92(2008) 13250.
[18] S. E. Muthu, N. V. R. Rao, M. M. Raja, S. Arumugam, K. Matsubayasi, Y. Uwatoko, J. Appl. Phys. 110 (2011) 083902.
[19] W. Maziarz, P. Czaja, M. J. Szczerba, L. Litynska-Dobrzynska, T. Czeppe, J. Dutkiewicz, J. Alloys Comp. 615, (2014) S173.
[20] T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B 73, (2006) 174413.
[21] V. V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V. V. Koledov, V. V. Shavrov, G. Wang, E. Palacios, J. Bartolomé, R. Burriel, Phys. Rev. B 81, (2010) 214406.
[22] B. Hernando, J. L. Sanchez Llamazares, J. D. Santos, L I Escoda, J. J. Suñol, R. Varga, D. Baldomir, D. Serantes, Appl. Phy. Lett. 92, (2008) 042504.
[23] N. H. Dan, N. H. Duc, N. H. Yen, P. T. Thanh, L. V. Bau N. M. An, D. T. K. Anh, N. A. Bang, N. T. Mai, P. K. Anh, T. D. Thanh, T. L. Phan, S. C. Yu, J. Magn. Mag Mate. 374, (2015) 372.
[24] J. L. Sánchez Llamazares, T. Sanchez .T, J. D. Santos, M. J. Pérez, M. L. Sanchez, B. Hernando, LI. Escoda, J. J. Suñol, and R. Varga, Appl. Phys. Lett. 92 (2008) 012513.
[25] J. D. Santos, T. Sanchez, P. Alvarez, M.L. Sanchez, J. L. Sánchez Llamazares, B. Hernando, LI. Escoda. LI, J. J. Suñol, and R. Varga, J. Appl. Phys. 103 (2008) 07B326.
[26] H. C. Xuan, K. X. Xie, D. H. Wang, Z. D. Han, C. L. Zhang, B. X. Gu, and Y. W. Du; Appl Phys Lett 92 (2008) 242506.
[27] K. Pushpanathan, R. Chokkalingam, R. Senthurpandi, R. Mahendran, Mater. Manufact. Proc.26 (2011)223.
[28] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa, Appl. Phys. Lett. 85 (2004)4358.
[29] S. Esakki Muthu, N. V. Rama Rao, M. Manivel Raja, D. M. Raj Kumar, D. Mohan Radheep, and S. Arumugam, Appl. Phys. Lett. 43 (2010) 425002.
[30] V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner and S. K. Nayak, Phys. Rev. B 72 (2008) 184427.
[31] B. Ingale, R. Gopalan, M. Manivel Raja, V. Chandrasekaran. and S. Ram, J. Appl. Phys., 102 (2007) 013906.
[32] X. Moya, L. Ma˜nosa, A. Planes, S. Aksoy, M. Acet, E. Wassermann, T. Krenke, Adv. Mate. Res., 52 (2008)189.
[33] R. Vishnoi and D. Kaur, J. Appl. Phys. 107 (2010)103907.