Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30477
Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

Authors: Yong Ren, Yaping Zhang

Abstract:

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.

Keywords: Microfluidics, phase change material, drug release kinetics, double emulsion

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100815

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974

References:


[1] A. Madene, M. Jacquot, J. Scher, and S. Desobry, “Flavour encapsulation and controlled release – a review,”Int. J. Food Sci. Technol.vol.41, no.1, pp.1-21, 2006.
[2] D. J. McClements, E. A. Decker, and J. Weiss, “Emulsion-based delivery systems for lipophilic bioactive components,” J. Food Sci.vol.72, pp.109-124, 2007.
[3] R. Karnik , F. Gu , P. Basto , C. Cannizzaro , L. Dean , W. Kyeimanu, R. Langer, and O.C. Farokhzad, “Microfluidic platform for controlled synthesis of polymeric nanoparticles,”NanoLett.vol.8, no.9, pp. 2906, 2008.
[4] K. Saskia, L. Peter, S. Ute, and N. Hiroshi, Fragrance Journal, vol.33, pp. 51, 2005.
[5] M. J. McShane, J. Q. Brown, K. B. Guice, and Y. M. Lvov, “Polyelectrolyte Microshells as Carriers for Fluorescent Sensors: Loading and Sensing Properties of a Ruthenium-Based Oxygen Indicator,” Nanoscience and Nanotechnology, vol.2, pp. 411-416, 2002.
[6] L. I. Kazakova , L. I. Shabarchina, G. B. Sukhorukov,“Co-encapsulation of enzyme and sensitive dye as a tool for fabrication of microcapsule based sensor for urea measuring,” Phys. Chem.Chem. Phys.vol.13, pp.11110, 2011.
[7] S. L. Poe, M. Kobaslija, and D. T. McQuade, “Mechanism and application of a microcapsule enabled multicatalyst reaction,” J. Am. Chem. Soc. vol.129, pp.9216, 2007.
[8] C. Ramaraoa, S. V. Ley, S. C. Smith, I. M. Shirley, and N. DeAlmeidac, “Polyurea encapsulated palladium acetate: a robust and recyclable catalyst for use in conventional and supercritical media,” Chem. Commun. vol.13, pp.1132, 2002.
[9] J. Sheng, “Modern Chemical Enhanced Oil Recovery: Theory and Practice,” Gulf Professional Publishing, 2010.
[10] C. H. Choi , J. H. Jung , D. W. Kim , Y. M. Chung, and C. S. Lee, “Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system,” Lab Chipvol.8, pp.1544, 2008.
[11] B. G. De Geest, A. G. Skirtach, A. A. Mamedov, A. A. Antipov, N. A. Kotov, S. C. De Smedt, and G. B. Sukhorukov, “Ultrasound-triggered release from multilayered capsules,” Small, vol.3, pp.804, 2007.
[12] T. He , K. Zhang , X. Mu , T. Luo , Y. Wang , and G. Luo, “A modified microfluidic chip for fabrication of paclitaxel-loaded poly (l-lactic acid) microspheres,” Microfluid. Nanofluid. vol.10, pp.1289, 2011.
[13] K. Bouchemal, S. Briancon , E. Perrier, H. Fessi , I. Bonnet, andN. Zydowicz, “Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification,”Int. J. Pharm, vol. 269, pp.89, 2004.
[14] T. Dobashi, F. J. Yeh, Q. C. Ying, K. Ichikawa, and B. Chu, “Experimental Investigation on the Structure of Microcapsules,” Langmuir, vol.11, pp.4278, 1995.
[15] A. Loxley, and B. Vincent, “Preparation of Poly(methylmethacrylate) Microcapsules with Liquid Cores.,” J. Colloid Interface Sci., vol.208, pp.49, 1998.
[16] P. J. Dowding, R. Atkin, B. Vincent, and P. Bouillot, “Oil core-polymer shell microcapsules prepared by internal phase separation from emulsion droplets. I. Characterization and release rates for microcapsules with polystyrene shells,” J. Am. Chem. Soc.vol.20, pp.11374, 2004.
[17] R. Bocanegra , A. G. Gaonkar , A. Barrero , I. G. Loscertales ,D. Pechack , and M. Marquez, “Production of Cocoa Butter Microcapsules Using an Electrospray Process,” Journal of Food Science, vol.70, pp.8, 2005.
[18] H. Chen, Y. Zhao, Y. Song, and L. Jiang, “One-step multicomponent encapsulation by compound-fluidic electrospray,” J. Am. Chem. Soc., vol.130, pp.7800, 2008.
[19] S. S. Datta, A. Abbaspourrad, E. Amstad, J. Fan, S. Kim, M. Romanowsky, H.C. Shum, B. Sun, A. S. Utada, M. Windbergs, S. Zhou, D. A. Weitz, “Double Emulsion Templated Solid Microcapsules: Mechanics And Controlled Release,” Advanced Materials, vol.26, no.14, pp.2205, 2014.
[20] C. Berkland, M. King, A. Cox, K. Kim, D. Pack, “Precise control of PLG microspheresize provides enhanced control of drug release rate,” J Control Release, vol.82, pp.137–47, 2002.
[21] D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, and J. Siepmann, “How porosity and size affect the drug release mechanisms from PLGA-based microparticles,”Int JPharm, vol.314, pp.198–206, 2006.
[22] A. Budhian, S.J. Siegel, and K.I. Winey, “Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content,” Int. J. Pharm.vol.336, pp.367–75, 2007.
[23] G. J. S. Dawes, L. Fratila-Apachitei, K. Mulia, I. Apachitei, G. J. Witkamp, J. Duszczyk, “Size effect of PLGA spheres on drug loading efficiency and release profiles,”J Mater Sci – Mater Med, vol.20, pp.1089–94, 2009.
[24] G.M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no.7101, pp.368-373, 2006.
[25] H.C. Shum, D. Lee, I. Yoon, T. Kodger and D.A. Weitz, “Double Emulsion-Templated Monodisperse Phospholipid Vesicles,” Langmuir, vol. 24, pp.7651–7653, 2008.
[26] C.I. Zoldesi, P. Steegstra and A. Imhof, “Encapsulation of emulsion droplets by organo-silica shells,” J. Colloid Interface Sci., vol.308, pp. 121–129, 2007.
[27] Y. Ren, Z. Liu and H.C. Shum, “Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem," Lab Chip, vol.15, no.1, pp.121 – 134, 2015.
[28] S. H. Kim , J. W. Kim , J. C. Cho , and D. A. Weitz,“Double-emulsion drops with ultra- thin shells for capsule templates,” Lab Chip, vol.11, pp.3162, 2011.
[29] S. Zhou, J. Fan, S. S. Datta, M. Guo, X. Guo, and D. A. Weitz, “Thermally switched release from nanoparticle colloidosomes,” Adv. Func. Mater., vol.23, pp.5925, 2013.
[30] A. Abbaspourrad, N. J. Carroll, S. H. Kim, and D. A. Weitz, “Polymer microcapsules with programmable active release,” J. Am. Chem.Soc., vol.135, pp.7744, 2013.
[31] Y. Song, A. Sauret, and H. C. Shum, “All-aqueous multiphase microfluidics,” Biomicrofluidics, vol.7, pp.061301, 2013.
[32] R. Sabbah, M. M. Farid, and S. Al-Hallaj, “Micro-channel Heat Sink with Slurry of Water with Micro-encapsulated Phase Change Material: 3D-Numerical Study,” Applied Thermal Engineering, vol. 29, no. 2-3, pp. 445-454, 2009.
[33] B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang et al., “An Experimental Study of Convective Heat Transfer with Microencapsulated Phase Change Material Suspension: Laminar Flow in a Circular Tube under Constant Heat Flux,” Experimental Thermal Fluid Science, vol. 32, pp. 1638-1646, 2008.