The TiO2 Refraction Film for CsI Scintillator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light through TiO2 filmand the first surface of CsI then arrive to the second surface of CsI. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: Cesium iodide, AAO, TiO2, Refraction, X-ray.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100799

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444

References:


[1] C.M. Schaefer-Prokop, D.W. De Boo, M. Uffmann, M. Prokop. DR and CR: Recent advances in technology, European Journal of Radiology, 72(2), (2009) 194-201.
[2] A. Koch, C. Raven, P. Spanne, A. Snigirev, X-ray imaging with submicrometer resolution employing transparent luminescent screens, Journal of the Optical Society of America A, 15(7), (1998) 1940-1951.
[3] S Zazubovich. Physics of halide scintillators, Radiation Measurements, 33(5), (2001) 699-704.
[4] U.L. Olsen, X. Badel, J. Linnros, M. Di Michiel, T. Martin, S. Schmidt, H.F. Poulsen, Development of a high-efficiency high-resolution imaging detector for 30–80 keV X-rays, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 576(1), (2007) 52-55.
[5] A. M. Gurvich, Luminescent screens for mammography, Radiation Measurements, 24(4), (1995) 325-330.
[6] A Koch, H Rosenfeldt, Powder-phosphor screens combined with interference filters for X-ray imaging with increased brightness, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 432(2-3), (1999) 358-363.
[7] M. Stampanoni, G. Borchert, P. W., R. Abela, B. Patterson, S. Hunt, D. Vermeulen,.P. Rüegsegger, High resolution X-ray detector for synchrotron-based microtomography, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 491(1-2), (2002) 291-301.
[8] A. Ananenko, A. Fedorov, A. Lebedinsky, P. Mateychenko, V. Tarasov, Y. Vidaj, structural dependence of CsI(Tl) film scintillation properties, Semiconductor Physics, Quantum Electronics & Optoelectronics, 7(3), (2004) 297-300.
[9] E. Zych, C. Brecher, and H. Lingertat, Depletion of high-energy carriers in YAG optical ceramic materials, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54(11), (1998) 1771-1777.
[10] H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima, Direct preparation of anatase TiO2 nanotubes in porous alumina membranes, Journal of Materials Chemistry, 9(12), (1999) 2971-2972.
[11] H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, Preparation of TiO2 fibers with well-organized structures, Journal of Materials Chemistry, 10, (2000) 2005-2006.
[12] K. Shimizu, H. Imai, H. Hirashima, and K. Tsukuma, Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, Thin Solid Films 351(1-2), (1999) 220-224.
[13] C. Chen, C. Cheng, G. Tang, T. Lin, C. Lin, “Template Assisted Fabrication of TiO2 and BaTiO3 Nanotubes”, Applied Mechanics and Materials 271-272, (2013) 107-111.