WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10001253,
	  title     = {Wet Flue Gas Desulfurization Using a New O-Element Design Which Replaces the Venturi Scrubber},
	  author    = {P. Lestinsky and  D. Jecha and  V. Brummer and  P. Stehlik},
	  country	= {},
	  institution	= {},
	  abstract     = {Scrubbing by a liquid spraying is one of the most
effective processes used for removal of fine particles and soluble
gas pollutants (such as SO2, HCl, HF) from the flue gas. There are
many configurations of scrubbers designed to provide contact
between the liquid and gas stream for effectively capturing
particles or soluble gas pollutants, such as spray plates, packed bed
towers, jet scrubbers, cyclones, vortex and venturi scrubbers. The
primary function of venturi scrubber is the capture of fine particles
as well as HCl, HF or SO2 removal with effect of the flue gas
temperature decrease before input to the absorption column. In this
paper, sulfur dioxide (SO2) from flue gas was captured using new
design replacing venturi scrubber (1st degree of wet scrubbing).
The flue gas was prepared by the combustion of the carbon
disulfide solution in toluene (1:1 vol.) in the flame in the reactor.
Such prepared flue gas with temperature around 150°C was
processed in designed laboratory O-element scrubber. Water was
used as absorbent liquid. The efficiency of SO2 removal, pressure
drop and temperature drop were measured on our experimental
device. The dependence of these variables on liquid-gas ratio was
observed. The average temperature drop was in the range from
150°C to 40°C. The pressure drop was increased with increasing of
a liquid-gas ratio, but no too much as for the common venturi
scrubber designs. The efficiency of SO2 removal was up to 70 %.
The pressure drop of our new designed wet scrubber is similar to
commonly used venturi scrubbers; nevertheless the influence of
amount of the liquid on pressure drop is not so significant.
},
	    journal   = {International Journal of Chemical and Molecular Engineering},
	  volume    = {9},
	  number    = {6},
	  year      = {2015},
	  pages     = {614 - 618},
	  ee        = {https://publications.waset.org/pdf/10001253},
	  url   	= {https://publications.waset.org/vol/102},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 102, 2015},
	}