WASET
	%0 Journal Article
	%A Martin Cermak and  Stanislav Sysala
	%D 2015
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 100, 2015
	%T A TFETI Domain Decompositon Solver for Von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening
	%U https://publications.waset.org/pdf/10001000
	%V 100
	%X In this paper we present the efficient parallel
implementation of elastoplastic problems based on the TFETI (Total
Finite Element Tearing and Interconnecting) domain decomposition
method. This approach allow us to use parallel solution and compute
this nonlinear problem on the supercomputers and decrease the
solution time and compute problems with millions of DOFs. In
our approach we consider an associated elastoplastic model with
the von Mises plastic criterion and the combination of linear
isotropic-kinematic hardening law. This model is discretized by
the implicit Euler method in time and by the finite element
method in space. We consider the system of nonlinear equations
with a strongly semismooth and strongly monotone operator. The
semismooth Newton method is applied to solve this nonlinear
system. Corresponding linearized problems arising in the Newton
iterations are solved in parallel by the above mentioned TFETI. The
implementation of this problem is realized in our in-house MatSol
packages developed in MatLab.

	%P 571 - 576