WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/10000889,
	  title     = {Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel},
	  author    = {Pankaj Chandna and  Dinesh Kumar},
	  country	= {},
	  institution	= {},
	  abstract     = {The present work analyses different parameters of end
milling to minimize the surface roughness for AISI D2 steel. D2 Steel
is generally used for stamping or forming dies, punches, forming
rolls, knives, slitters, shear blades, tools, scrap choppers, tyre
shredders etc. Surface roughness is one of the main indices that
determines the quality of machined products and is influenced by
various cutting parameters. In machining operations, achieving
desired surface quality by optimization of machining parameters, is a
challenging job. In case of mating components the surface roughness
become more essential and is influenced by the cutting parameters,
because, these quality structures are highly correlated and are
expected to be influenced directly or indirectly by the direct effect of
process parameters or their interactive effects (i.e. on process
environment). In this work, the effects of selected process parameters
on surface roughness and subsequent setting of parameters with the
levels have been accomplished by Taguchi’s parameter design
approach. The experiments have been performed as per the
combination of levels of different process parameters suggested by
L9 orthogonal array. Experimental investigation of the end milling of
AISI D2 steel with carbide tool by varying feed, speed and depth of
cut and the surface roughness has been measured using surface
roughness tester. Analyses of variance have been performed for mean
and signal-to-noise ratio to estimate the contribution of the different
process parameters on the process.
},
	    journal   = {International Journal of Industrial and Manufacturing Engineering},
	  volume    = {9},
	  number    = {3},
	  year      = {2015},
	  pages     = {512 - 517},
	  ee        = {https://publications.waset.org/pdf/10000889},
	  url   	= {https://publications.waset.org/vol/99},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 99, 2015},
	}