WASET
	%0 Journal Article
	%A S. Chuenchooklin and  S. Taweepong and  U. Pangnakorn
	%D 2015
	%J International Journal of Industrial and Manufacturing Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 99, 2015
	%T Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality
	%U https://publications.waset.org/pdf/10000743
	%V 99
	%X This research was conducted in the Mae Sot
Watershed where located in the Moei River Basin at the Upper
Salween River Basin in Tak Province, Thailand. The Mae Sot
Municipality is the largest urban area in Tak Province and situated in
the midstream of the Mae Sot Watershed. It usually faces flash flood
problem after heavy rain due to poor flood management has been
reported since economic rapidly bloom up in recent years. Its
catchment can be classified as ungauged basin with lack of rainfall
data and no any stream gaging station was reported. It was attached
by most severely flood events in 2013 as the worst studied case for
all those communities in this municipality. Moreover, other problems
are also faced in this watershed, such shortage water supply for
domestic consumption and agriculture utilizations including a
deterioration of water quality and landslide as well. The research
aimed to increase capability building and strengthening the
participation of those local community leaders and related agencies to
conduct better water management in urban area was started by mean
of the data collection and illustration of the appropriated application
of some short period rainfall forecasting model as they aim for better
flood relief plan and management through the hydrologic model
system and river analysis system programs. The authors intended to
apply the global rainfall data via the integrated data viewer (IDV)
program from the Unidata with the aim for rainfall forecasting in a
short period of 7-10 days in advance during rainy season instead of
real time record. The IDV product can be present in an advance
period of rainfall with time step of 3-6 hours was introduced to the
communities. The result can be used as input data to the hydrologic
modeling system model (HEC-HMS) for synthesizing flood
hydrographs and use for flood forecasting as well. The authors
applied the river analysis system model (HEC-RAS) to present flood
flow behaviors in the reach of the Mae Sot stream via the downtown
of the Mae Sot City as flood extents as the water surface level at
every cross-sectional profiles of the stream. Both models of HMS and
RAS were tested in 2013 with observed rainfall and inflow-outflow
data from the Mae Sot Dam. The result of HMS showed fit to the
observed data at the dam and applied at upstream boundary discharge
to RAS in order to simulate flood extents and tested in the field, and
the result found satisfying. The product of rainfall from IDV was fair
while compared with observed data. However, it is an appropriate
tool to use in the ungauged catchment to use with flood hydrograph
and river analysis models for future efficient flood relief plan and
management.

	%P 219 - 224