WASET
	%0 Journal Article
	%A R. Bures and  M. Streckova and  M. Faberova and  P. Kurek
	%D 2015
	%J International Journal of Materials and Metallurgical Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 99, 2015
	%T Preparation of Fe3Si/Ferrite Micro- and Nano-Powder Composite
	%U https://publications.waset.org/pdf/10000711
	%V 99
	%X Composite material based on Fe3Si micro-particles
and Mn-Zn nano-ferrite was prepared using powder metallurgy
technology. The sol-gel followed by autocombustion process was
used for synthesis of Mn0.8Zn0.2Fe2O4 ferrite. 3 wt.% of mechanically
milled ferrite was mixed with Fe3Si powder alloy. Mixed micro-nano
powder system was homogenized by the Resonant Acoustic Mixing
using ResodynLabRAM Mixer. This non-invasive homogenization
technique was used to preserve spherical morphology of Fe3Si
powder particles. Uniaxial cold pressing in the closed die at pressure
600 MPa was applied to obtain a compact sample. Microwave
sintering of green compact was realized at 800°C, 20 minutes, in air.
Density of the powders and composite was measured by
Hepycnometry. Impulse excitation method was used to measure
elastic properties of sintered composite. Mechanical properties were
evaluated by measurement of transverse rupture strength (TRS) and
Vickers hardness (HV). Resistivity was measured by 4 point probe
method. Ferrite phase distribution in volume of the composite was
documented by metallographic analysis.
It has been found that nano-ferrite particle distributed among
micro- particles of Fe3Si powder alloy led to high relative density
(~93%) and suitable mechanical properties (TRS >100 MPa, HV
~1GPa, E-modulus ~140 GPa) of the composite. High electric
resistivity (R~6.7 ohm.cm) of prepared composite indicate their
potential application as soft magnetic material at medium and high
frequencies.

	%P 420 - 424